jhoppanne commited on
Commit
2d2f11c
·
verified ·
1 Parent(s): 1dd8a75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +182 -174
README.md CHANGED
@@ -1,174 +1,182 @@
1
- ---
2
- license: apache-2.0
3
- base_model: microsoft/resnet-50
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - imagefolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: Dogs-Breed-Image-Classification-V0
12
- results:
13
- - task:
14
- name: Image Classification
15
- type: image-classification
16
- dataset:
17
- name: imagefolder
18
- type: imagefolder
19
- config: default
20
- split: train
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.7444120505344995
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # Dogs-Breed-Image-Classification-V0
32
-
33
- This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 1.8210
36
- - Accuracy: 0.7444
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
- - seed: 42
59
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
- - lr_scheduler_type: linear
61
- - num_epochs: 100
62
-
63
- ### Training results
64
-
65
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|
67
- | 13.4902 | 1.0 | 515 | 4.7822 | 0.0104 |
68
- | 4.7159 | 2.0 | 1030 | 4.6822 | 0.0323 |
69
- | 4.6143 | 3.0 | 1545 | 4.5940 | 0.0554 |
70
- | 4.4855 | 4.0 | 2060 | 4.5027 | 0.0935 |
71
- | 4.36 | 5.0 | 2575 | 4.3961 | 0.1239 |
72
- | 4.2198 | 6.0 | 3090 | 4.3112 | 0.1528 |
73
- | 4.0882 | 7.0 | 3605 | 4.1669 | 0.1747 |
74
- | 3.9314 | 8.0 | 4120 | 4.0775 | 0.2021 |
75
- | 3.7863 | 9.0 | 4635 | 3.9487 | 0.2310 |
76
- | 3.6511 | 10.0 | 5150 | 3.9028 | 0.2466 |
77
- | 3.5168 | 11.0 | 5665 | 3.8635 | 0.2626 |
78
- | 3.3999 | 12.0 | 6180 | 3.7550 | 0.2767 |
79
- | 3.3037 | 13.0 | 6695 | 3.6973 | 0.2884 |
80
- | 3.1613 | 14.0 | 7210 | 3.6315 | 0.3037 |
81
- | 3.0754 | 15.0 | 7725 | 3.4839 | 0.3188 |
82
- | 2.9441 | 16.0 | 8240 | 3.4406 | 0.3302 |
83
- | 2.8579 | 17.0 | 8755 | 3.3528 | 0.3406 |
84
- | 2.7531 | 18.0 | 9270 | 3.3132 | 0.3472 |
85
- | 2.6477 | 19.0 | 9785 | 3.2736 | 0.3567 |
86
- | 2.5422 | 20.0 | 10300 | 3.1950 | 0.3756 |
87
- | 2.4629 | 21.0 | 10815 | 3.1174 | 0.4004 |
88
- | 2.3735 | 22.0 | 11330 | 2.9916 | 0.4225 |
89
- | 2.2436 | 23.0 | 11845 | 2.9205 | 0.4509 |
90
- | 2.1578 | 24.0 | 12360 | 2.9197 | 0.4689 |
91
- | 2.0671 | 25.0 | 12875 | 2.8196 | 0.4866 |
92
- | 1.9902 | 26.0 | 13390 | 2.7117 | 0.4961 |
93
- | 1.8737 | 27.0 | 13905 | 2.7129 | 0.5078 |
94
- | 1.7945 | 28.0 | 14420 | 2.6654 | 0.5143 |
95
- | 1.7092 | 29.0 | 14935 | 2.6273 | 0.5301 |
96
- | 1.6228 | 30.0 | 15450 | 2.5407 | 0.5454 |
97
- | 1.5744 | 31.0 | 15965 | 2.5412 | 0.5559 |
98
- | 1.4761 | 32.0 | 16480 | 2.4658 | 0.5658 |
99
- | 1.4084 | 33.0 | 16995 | 2.4247 | 0.5673 |
100
- | 1.2624 | 34.0 | 17510 | 2.3766 | 0.5758 |
101
- | 1.2066 | 35.0 | 18025 | 2.2879 | 0.5843 |
102
- | 1.124 | 36.0 | 18540 | 2.2039 | 0.5872 |
103
- | 1.074 | 37.0 | 19055 | 2.2469 | 0.5965 |
104
- | 0.9937 | 38.0 | 19570 | 2.1575 | 0.6011 |
105
- | 0.9418 | 39.0 | 20085 | 2.0854 | 0.6122 |
106
- | 0.8812 | 40.0 | 20600 | 1.9991 | 0.6254 |
107
- | 0.819 | 41.0 | 21115 | 2.0161 | 0.6312 |
108
- | 0.771 | 42.0 | 21630 | 1.9253 | 0.6375 |
109
- | 0.7128 | 43.0 | 22145 | 1.9412 | 0.6390 |
110
- | 0.6434 | 44.0 | 22660 | 1.8463 | 0.6509 |
111
- | 0.6138 | 45.0 | 23175 | 1.8163 | 0.6650 |
112
- | 0.5325 | 46.0 | 23690 | 1.7881 | 0.6710 |
113
- | 0.498 | 47.0 | 24205 | 1.7526 | 0.6744 |
114
- | 0.4565 | 48.0 | 24720 | 1.7155 | 0.6859 |
115
- | 0.4109 | 49.0 | 25235 | 1.6874 | 0.6946 |
116
- | 0.3681 | 50.0 | 25750 | 1.7386 | 0.6997 |
117
- | 0.3306 | 51.0 | 26265 | 1.6578 | 0.7104 |
118
- | 0.2913 | 52.0 | 26780 | 1.6641 | 0.7104 |
119
- | 0.2598 | 53.0 | 27295 | 1.6823 | 0.7162 |
120
- | 0.2311 | 54.0 | 27810 | 1.6835 | 0.7157 |
121
- | 0.2115 | 55.0 | 28325 | 1.6581 | 0.7206 |
122
- | 0.1843 | 56.0 | 28840 | 1.6286 | 0.7274 |
123
- | 0.1668 | 57.0 | 29355 | 1.6358 | 0.7225 |
124
- | 0.1483 | 58.0 | 29870 | 1.6422 | 0.7250 |
125
- | 0.132 | 59.0 | 30385 | 1.6618 | 0.7284 |
126
- | 0.1164 | 60.0 | 30900 | 1.6894 | 0.7262 |
127
- | 0.1043 | 61.0 | 31415 | 1.6923 | 0.7276 |
128
- | 0.0937 | 62.0 | 31930 | 1.6627 | 0.7323 |
129
- | 0.0826 | 63.0 | 32445 | 1.6280 | 0.7342 |
130
- | 0.0743 | 64.0 | 32960 | 1.6204 | 0.7366 |
131
- | 0.0638 | 65.0 | 33475 | 1.6890 | 0.7383 |
132
- | 0.0603 | 66.0 | 33990 | 1.6967 | 0.7335 |
133
- | 0.0491 | 67.0 | 34505 | 1.6975 | 0.7306 |
134
- | 0.0459 | 68.0 | 35020 | 1.7242 | 0.7337 |
135
- | 0.0416 | 69.0 | 35535 | 1.7019 | 0.7374 |
136
- | 0.0382 | 70.0 | 36050 | 1.7098 | 0.7381 |
137
- | 0.0378 | 71.0 | 36565 | 1.7188 | 0.7383 |
138
- | 0.0326 | 72.0 | 37080 | 1.8212 | 0.7376 |
139
- | 0.0323 | 73.0 | 37595 | 1.7965 | 0.7393 |
140
- | 0.0299 | 74.0 | 38110 | 1.7934 | 0.7301 |
141
- | 0.0259 | 75.0 | 38625 | 1.7799 | 0.7335 |
142
- | 0.0276 | 76.0 | 39140 | 1.8456 | 0.7301 |
143
- | 0.0257 | 77.0 | 39655 | 1.8551 | 0.7391 |
144
- | 0.0234 | 78.0 | 40170 | 1.7780 | 0.7391 |
145
- | 0.0222 | 79.0 | 40685 | 1.8216 | 0.7362 |
146
- | 0.0195 | 80.0 | 41200 | 1.8333 | 0.7352 |
147
- | 0.0214 | 81.0 | 41715 | 1.8526 | 0.7430 |
148
- | 0.0207 | 82.0 | 42230 | 1.8581 | 0.7364 |
149
- | 0.0171 | 83.0 | 42745 | 1.8329 | 0.7393 |
150
- | 0.0175 | 84.0 | 43260 | 1.8841 | 0.7396 |
151
- | 0.0165 | 85.0 | 43775 | 1.8381 | 0.7345 |
152
- | 0.0152 | 86.0 | 44290 | 1.8192 | 0.7379 |
153
- | 0.0168 | 87.0 | 44805 | 1.8538 | 0.7388 |
154
- | 0.0158 | 88.0 | 45320 | 1.8390 | 0.7371 |
155
- | 0.0181 | 89.0 | 45835 | 1.8555 | 0.7374 |
156
- | 0.0142 | 90.0 | 46350 | 1.7987 | 0.7352 |
157
- | 0.0147 | 91.0 | 46865 | 1.8446 | 0.7427 |
158
- | 0.0142 | 92.0 | 47380 | 1.8210 | 0.7444 |
159
- | 0.0124 | 93.0 | 47895 | 1.8233 | 0.7405 |
160
- | 0.0128 | 94.0 | 48410 | 1.8517 | 0.7393 |
161
- | 0.0135 | 95.0 | 48925 | 1.8408 | 0.7413 |
162
- | 0.0122 | 96.0 | 49440 | 1.8153 | 0.7396 |
163
- | 0.0141 | 97.0 | 49955 | 1.8645 | 0.7432 |
164
- | 0.0121 | 98.0 | 50470 | 1.8526 | 0.7430 |
165
- | 0.0124 | 99.0 | 50985 | 1.8693 | 0.7388 |
166
- | 0.0113 | 100.0 | 51500 | 1.8051 | 0.7427 |
167
-
168
-
169
- ### Framework versions
170
-
171
- - Transformers 4.37.2
172
- - Pytorch 2.3.0
173
- - Datasets 2.15.0
174
- - Tokenizers 0.15.1
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-50
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: Dogs-Breed-Image-Classification-V0
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.7444120505344995
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Dogs-Breed-Image-Classification-V0
32
+
33
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.8210
36
+ - Accuracy: 0.7444
37
+
38
+ ## Model description
39
+
40
+ This model was trained using dataset from [Kaggle - Standford dogs dataset](https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset.)
41
+
42
+ Quotes from the website:
43
+ The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. It was originally collected for fine-grain image categorization, a challenging problem as certain dog breeds have near identical features or differ in colour and age.
44
+
45
+ citation:
46
+ Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. [pdf] [poster] [BibTex]
47
+
48
+ Secondary:
49
+ J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009. [pdf] [BibTex]
50
+ ## Intended uses & limitations
51
+
52
+ This model is fined tune solely for classifiying 120 species of dogs.
53
+
54
+ ## Training and evaluation data
55
+
56
+ 75% training data, 25% testing data.
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 5e-05
64
+ - train_batch_size: 32
65
+ - eval_batch_size: 32
66
+ - seed: 42
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 100
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
74
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
75
+ | 13.4902 | 1.0 | 515 | 4.7822 | 0.0104 |
76
+ | 4.7159 | 2.0 | 1030 | 4.6822 | 0.0323 |
77
+ | 4.6143 | 3.0 | 1545 | 4.5940 | 0.0554 |
78
+ | 4.4855 | 4.0 | 2060 | 4.5027 | 0.0935 |
79
+ | 4.36 | 5.0 | 2575 | 4.3961 | 0.1239 |
80
+ | 4.2198 | 6.0 | 3090 | 4.3112 | 0.1528 |
81
+ | 4.0882 | 7.0 | 3605 | 4.1669 | 0.1747 |
82
+ | 3.9314 | 8.0 | 4120 | 4.0775 | 0.2021 |
83
+ | 3.7863 | 9.0 | 4635 | 3.9487 | 0.2310 |
84
+ | 3.6511 | 10.0 | 5150 | 3.9028 | 0.2466 |
85
+ | 3.5168 | 11.0 | 5665 | 3.8635 | 0.2626 |
86
+ | 3.3999 | 12.0 | 6180 | 3.7550 | 0.2767 |
87
+ | 3.3037 | 13.0 | 6695 | 3.6973 | 0.2884 |
88
+ | 3.1613 | 14.0 | 7210 | 3.6315 | 0.3037 |
89
+ | 3.0754 | 15.0 | 7725 | 3.4839 | 0.3188 |
90
+ | 2.9441 | 16.0 | 8240 | 3.4406 | 0.3302 |
91
+ | 2.8579 | 17.0 | 8755 | 3.3528 | 0.3406 |
92
+ | 2.7531 | 18.0 | 9270 | 3.3132 | 0.3472 |
93
+ | 2.6477 | 19.0 | 9785 | 3.2736 | 0.3567 |
94
+ | 2.5422 | 20.0 | 10300 | 3.1950 | 0.3756 |
95
+ | 2.4629 | 21.0 | 10815 | 3.1174 | 0.4004 |
96
+ | 2.3735 | 22.0 | 11330 | 2.9916 | 0.4225 |
97
+ | 2.2436 | 23.0 | 11845 | 2.9205 | 0.4509 |
98
+ | 2.1578 | 24.0 | 12360 | 2.9197 | 0.4689 |
99
+ | 2.0671 | 25.0 | 12875 | 2.8196 | 0.4866 |
100
+ | 1.9902 | 26.0 | 13390 | 2.7117 | 0.4961 |
101
+ | 1.8737 | 27.0 | 13905 | 2.7129 | 0.5078 |
102
+ | 1.7945 | 28.0 | 14420 | 2.6654 | 0.5143 |
103
+ | 1.7092 | 29.0 | 14935 | 2.6273 | 0.5301 |
104
+ | 1.6228 | 30.0 | 15450 | 2.5407 | 0.5454 |
105
+ | 1.5744 | 31.0 | 15965 | 2.5412 | 0.5559 |
106
+ | 1.4761 | 32.0 | 16480 | 2.4658 | 0.5658 |
107
+ | 1.4084 | 33.0 | 16995 | 2.4247 | 0.5673 |
108
+ | 1.2624 | 34.0 | 17510 | 2.3766 | 0.5758 |
109
+ | 1.2066 | 35.0 | 18025 | 2.2879 | 0.5843 |
110
+ | 1.124 | 36.0 | 18540 | 2.2039 | 0.5872 |
111
+ | 1.074 | 37.0 | 19055 | 2.2469 | 0.5965 |
112
+ | 0.9937 | 38.0 | 19570 | 2.1575 | 0.6011 |
113
+ | 0.9418 | 39.0 | 20085 | 2.0854 | 0.6122 |
114
+ | 0.8812 | 40.0 | 20600 | 1.9991 | 0.6254 |
115
+ | 0.819 | 41.0 | 21115 | 2.0161 | 0.6312 |
116
+ | 0.771 | 42.0 | 21630 | 1.9253 | 0.6375 |
117
+ | 0.7128 | 43.0 | 22145 | 1.9412 | 0.6390 |
118
+ | 0.6434 | 44.0 | 22660 | 1.8463 | 0.6509 |
119
+ | 0.6138 | 45.0 | 23175 | 1.8163 | 0.6650 |
120
+ | 0.5325 | 46.0 | 23690 | 1.7881 | 0.6710 |
121
+ | 0.498 | 47.0 | 24205 | 1.7526 | 0.6744 |
122
+ | 0.4565 | 48.0 | 24720 | 1.7155 | 0.6859 |
123
+ | 0.4109 | 49.0 | 25235 | 1.6874 | 0.6946 |
124
+ | 0.3681 | 50.0 | 25750 | 1.7386 | 0.6997 |
125
+ | 0.3306 | 51.0 | 26265 | 1.6578 | 0.7104 |
126
+ | 0.2913 | 52.0 | 26780 | 1.6641 | 0.7104 |
127
+ | 0.2598 | 53.0 | 27295 | 1.6823 | 0.7162 |
128
+ | 0.2311 | 54.0 | 27810 | 1.6835 | 0.7157 |
129
+ | 0.2115 | 55.0 | 28325 | 1.6581 | 0.7206 |
130
+ | 0.1843 | 56.0 | 28840 | 1.6286 | 0.7274 |
131
+ | 0.1668 | 57.0 | 29355 | 1.6358 | 0.7225 |
132
+ | 0.1483 | 58.0 | 29870 | 1.6422 | 0.7250 |
133
+ | 0.132 | 59.0 | 30385 | 1.6618 | 0.7284 |
134
+ | 0.1164 | 60.0 | 30900 | 1.6894 | 0.7262 |
135
+ | 0.1043 | 61.0 | 31415 | 1.6923 | 0.7276 |
136
+ | 0.0937 | 62.0 | 31930 | 1.6627 | 0.7323 |
137
+ | 0.0826 | 63.0 | 32445 | 1.6280 | 0.7342 |
138
+ | 0.0743 | 64.0 | 32960 | 1.6204 | 0.7366 |
139
+ | 0.0638 | 65.0 | 33475 | 1.6890 | 0.7383 |
140
+ | 0.0603 | 66.0 | 33990 | 1.6967 | 0.7335 |
141
+ | 0.0491 | 67.0 | 34505 | 1.6975 | 0.7306 |
142
+ | 0.0459 | 68.0 | 35020 | 1.7242 | 0.7337 |
143
+ | 0.0416 | 69.0 | 35535 | 1.7019 | 0.7374 |
144
+ | 0.0382 | 70.0 | 36050 | 1.7098 | 0.7381 |
145
+ | 0.0378 | 71.0 | 36565 | 1.7188 | 0.7383 |
146
+ | 0.0326 | 72.0 | 37080 | 1.8212 | 0.7376 |
147
+ | 0.0323 | 73.0 | 37595 | 1.7965 | 0.7393 |
148
+ | 0.0299 | 74.0 | 38110 | 1.7934 | 0.7301 |
149
+ | 0.0259 | 75.0 | 38625 | 1.7799 | 0.7335 |
150
+ | 0.0276 | 76.0 | 39140 | 1.8456 | 0.7301 |
151
+ | 0.0257 | 77.0 | 39655 | 1.8551 | 0.7391 |
152
+ | 0.0234 | 78.0 | 40170 | 1.7780 | 0.7391 |
153
+ | 0.0222 | 79.0 | 40685 | 1.8216 | 0.7362 |
154
+ | 0.0195 | 80.0 | 41200 | 1.8333 | 0.7352 |
155
+ | 0.0214 | 81.0 | 41715 | 1.8526 | 0.7430 |
156
+ | 0.0207 | 82.0 | 42230 | 1.8581 | 0.7364 |
157
+ | 0.0171 | 83.0 | 42745 | 1.8329 | 0.7393 |
158
+ | 0.0175 | 84.0 | 43260 | 1.8841 | 0.7396 |
159
+ | 0.0165 | 85.0 | 43775 | 1.8381 | 0.7345 |
160
+ | 0.0152 | 86.0 | 44290 | 1.8192 | 0.7379 |
161
+ | 0.0168 | 87.0 | 44805 | 1.8538 | 0.7388 |
162
+ | 0.0158 | 88.0 | 45320 | 1.8390 | 0.7371 |
163
+ | 0.0181 | 89.0 | 45835 | 1.8555 | 0.7374 |
164
+ | 0.0142 | 90.0 | 46350 | 1.7987 | 0.7352 |
165
+ | 0.0147 | 91.0 | 46865 | 1.8446 | 0.7427 |
166
+ | 0.0142 | 92.0 | 47380 | 1.8210 | 0.7444 |
167
+ | 0.0124 | 93.0 | 47895 | 1.8233 | 0.7405 |
168
+ | 0.0128 | 94.0 | 48410 | 1.8517 | 0.7393 |
169
+ | 0.0135 | 95.0 | 48925 | 1.8408 | 0.7413 |
170
+ | 0.0122 | 96.0 | 49440 | 1.8153 | 0.7396 |
171
+ | 0.0141 | 97.0 | 49955 | 1.8645 | 0.7432 |
172
+ | 0.0121 | 98.0 | 50470 | 1.8526 | 0.7430 |
173
+ | 0.0124 | 99.0 | 50985 | 1.8693 | 0.7388 |
174
+ | 0.0113 | 100.0 | 51500 | 1.8051 | 0.7427 |
175
+
176
+
177
+ ### Framework versions
178
+
179
+ - Transformers 4.37.2
180
+ - Pytorch 2.3.0
181
+ - Datasets 2.15.0
182
+ - Tokenizers 0.15.1