metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
ko-sbert-nli
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
๋ชจ๋ธ์ ์ฌ์ฉํ๊ธฐ ์ํด์๋ ko-sentence-transformers
๋ฅผ ์ค์นํด์ผ ํฉ๋๋ค.
pip install -U ko-sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["์๋
ํ์ธ์?", "ํ๊ตญ์ด ๋ฌธ์ฅ ์๋ฒ ๋ฉ์ ์ํ ๋ฒํธ ๋ชจ๋ธ์
๋๋ค."]
model = SentenceTransformer('ko-sbert-nli')
embeddings = model.encode(sentences)
print(embeddings)
Evaluation Results
KorNLI ํ์ต ๋ฐ์ดํฐ์ ์ผ๋ก ํ์ตํ ํ KorSTS ํ๊ฐ ๋ฐ์ดํฐ์ ์ผ๋ก ํ๊ฐํ ๊ฒฐ๊ณผ์ ๋๋ค.
- Cosine Pearson: 82.03
- Cosine Spearman: 82.36
- Euclidean Pearson: 80.06
- Euclidean Spearman: 79.85
- Manhattan Pearson: 80.08
- Manhattan Spearman: 79.91
- Dot Pearson: 75.76
- Dot Spearman: 74.72
Training
The model was trained with the parameters:
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 8886 with parameters:
{'batch_size': 64}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 888,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 889,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
- Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
- Reimers, Nils and Iryna Gurevych. โSentence-BERT: Sentence Embeddings using Siamese BERT-Networks.โ ArXiv abs/1908.10084 (2019)
- Ko-Sentence-BERT-SKTBERT
- KoBERT