bert-on-glue-ds / README.md
jganzabalseenka's picture
Training in progress epoch 7
d25411b
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: jganzabalseenka/bert-on-glue-ds
    results: []

jganzabalseenka/bert-on-glue-ds

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6481
  • Train Accuracy: 0.6600
  • Validation Loss: 0.6265
  • Validation Accuracy: 0.6838
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.6820 0.6379 0.9020 0.6838 0
0.6714 0.6429 0.6782 0.6838 1
0.6742 0.6461 0.6520 0.6838 2
0.6923 0.6287 0.6333 0.6838 3
0.6743 0.6363 0.6259 0.6838 4
0.6697 0.6423 0.6365 0.6838 5
0.6587 0.6505 0.6273 0.6838 6
0.6481 0.6600 0.6265 0.6838 7

Framework versions

  • Transformers 4.29.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3