File size: 2,705 Bytes
15c4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- formospeech/hat_asr_aligned
model-index:
- name: Whisper Tiny Hakka Condenser
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Hakka Condenser

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the HAT ASR Aligned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2092
- Cer: 12.0743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 976
- training_steps: 9760
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.186         | 0.9980  | 488  | 1.2024          | 49.3007 |
| 0.3895        | 1.9959  | 976  | 0.4851          | 26.5471 |
| 0.2054        | 2.9939  | 1464 | 0.3152          | 17.7208 |
| 0.1232        | 3.9918  | 1952 | 0.2593          | 16.5314 |
| 0.0844        | 4.9898  | 2440 | 0.2355          | 14.3364 |
| 0.0557        | 5.9877  | 2928 | 0.2269          | 15.5339 |
| 0.0367        | 6.9857  | 3416 | 0.2197          | 13.5042 |
| 0.0265        | 7.9836  | 3904 | 0.2149          | 13.1851 |
| 0.0199        | 8.9816  | 4392 | 0.2107          | 13.2591 |
| 0.0131        | 9.9796  | 4880 | 0.2113          | 14.0000 |
| 0.0084        | 10.9775 | 5368 | 0.2118          | 14.3977 |
| 0.006         | 11.9755 | 5856 | 0.2103          | 14.0104 |
| 0.0046        | 12.9734 | 6344 | 0.2109          | 13.5192 |
| 0.0036        | 13.9714 | 6832 | 0.2086          | 13.4972 |
| 0.003         | 14.9693 | 7320 | 0.2074          | 13.3643 |
| 0.0027        | 15.9673 | 7808 | 0.2083          | 13.7666 |
| 0.0023        | 16.9652 | 8296 | 0.2095          | 12.4280 |
| 0.0021        | 17.9632 | 8784 | 0.2105          | 12.3968 |
| 0.0019        | 18.9611 | 9272 | 0.2095          | 12.4581 |
| 0.0018        | 19.9591 | 9760 | 0.2092          | 12.0743 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1