File size: 1,413 Bytes
1313633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cb1bd
 
 
 
ed30d78
1313633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed30d78
1313633
 
 
 
 
ed30d78
 
1313633
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- formospeech/tat_asr_aligned
model-index:
- name: Whisper Tiny Taiwanese Condenser
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Taiwanese Condenser

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4292
- eval_cer: 9.5575
- eval_runtime: 1295.5814
- eval_samples_per_second: 4.335
- eval_steps_per_second: 0.136
- step: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1