Whisper Tiny Taiwanese (vanilla)
This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 1.3924
- Cer: 32.8471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.3116 | 0.9985 | 681 | 0.9744 | 57.5703 |
0.1801 | 1.9971 | 1362 | 0.9761 | 37.9992 |
0.1094 | 2.9956 | 2043 | 1.0098 | 36.0103 |
0.0642 | 3.9941 | 2724 | 1.0710 | 34.1475 |
0.0353 | 4.9927 | 3405 | 1.1779 | 34.8229 |
0.0194 | 5.9912 | 4086 | 1.2733 | 34.6312 |
0.0086 | 6.9897 | 4767 | 1.3132 | 34.7455 |
0.0027 | 7.9883 | 5448 | 1.3640 | 33.1173 |
0.0009 | 8.9868 | 6129 | 1.3809 | 32.4291 |
0.0005 | 9.9853 | 6810 | 1.3924 | 32.8471 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.0.0.post304
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jethrowang/whisper-tiny_tat-esc_vanilla
Base model
openai/whisper-tiny