File size: 2,571 Bytes
ebd5cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-finetuned-coding_instructions_2023_08_18__12_06
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-finetuned-coding_instructions_2023_08_18__12_06

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6230
- Rouge1: 47.0864
- Rouge2: 31.2968
- Rougel: 45.9675
- Rougelsum: 46.0612
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 10   | 0.9891          | 18.047  | 9.6197  | 18.1466 | 18.2622   | 16.9538 |
| No log        | 2.0   | 20   | 0.7803          | 21.724  | 12.8839 | 21.4666 | 21.6773   | 17.7385 |
| No log        | 3.0   | 30   | 0.6827          | 42.1883 | 27.0064 | 41.5285 | 41.6611   | 18.9077 |
| No log        | 4.0   | 40   | 0.6526          | 44.8257 | 28.8931 | 43.8323 | 43.7858   | 18.9846 |
| No log        | 5.0   | 50   | 0.6407          | 44.6781 | 29.5477 | 43.9053 | 43.8475   | 19.0    |
| No log        | 6.0   | 60   | 0.6334          | 46.039  | 31.3315 | 45.3508 | 45.3701   | 19.0    |
| No log        | 7.0   | 70   | 0.6281          | 46.8592 | 31.2186 | 46.1283 | 46.1169   | 19.0    |
| No log        | 8.0   | 80   | 0.6250          | 46.5201 | 30.8844 | 45.5541 | 45.6876   | 19.0    |
| No log        | 9.0   | 90   | 0.6236          | 47.074  | 31.2968 | 46.1336 | 46.258    | 19.0    |
| No log        | 10.0  | 100  | 0.6230          | 47.0864 | 31.2968 | 45.9675 | 46.0612   | 19.0    |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3