File size: 22,920 Bytes
b3ca691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

"""Implements a Hugging Causal LM wrapped inside a :class:`.ComposerModel`."""

import os
from copy import deepcopy
import warnings
import numpy as np
import logging
from typing import (
    TYPE_CHECKING,
    Any,
    List,
    Mapping,
    Optional,
    Tuple,
    Union,
    Dict,
)

import torch
import torch.nn as nn
from types import SimpleNamespace
from composer.models.huggingface import peft_installed
from composer.utils import dist

from torchmetrics import Metric
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    PretrainedConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
    PreTrainedTokenizer,
)

from llmfoundry.models.hf.hf_fsdp import hf_get_init_device
from llmfoundry.models.layers.attention import is_flash_v2_installed
from llmfoundry.models.utils import init_empty_weights
from llmfoundry.utils.config_utils import get_hf_config_value

from composer.models.huggingface import HuggingFaceModel
from compose_rl.reward_learning.utils import prepare_hf_sequence_classification_model_for_fsdp, SequenceClassifierOutput

if TYPE_CHECKING:
    from peft import PeftModel

__all__ = ['ComposerHFSequenceClassification']

log = logging.getLogger(__name__)


Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]


def layer_init(layer: nn.Module, std: float=np.sqrt(2), bias_const: float=0.0):
    torch.nn.init.normal_(layer.weight, std=std)
    torch.nn.init.constant_(layer.bias, val=bias_const)
    return layer


class RewardModelConfig(PretrainedConfig):
    model_type = "pairwise_rm"

    def __init__(
        self,
        base_model: str = "meta-llama/Meta-Llama-3-70B-Instruct",
        base_config: PretrainedConfig = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct"),
        p_dropout: float = 0.0,
        n_labels: int = 1,
        bias: float = 0.0,
        return_logits: bool = False,
        pretrain_cfg: Dict[str, Any] = {},
        pretrained: bool = False,
        **kwargs: Any,
    ):
        super().__init__(**kwargs)
        self.base_model = base_model
        self.base_config = base_config
        temp_config = deepcopy(base_config)
        if not isinstance(base_config, dict):
            temp_config = base_config.__dict__
        for key, value in temp_config.items():
            if key not in ["_name_or_path", "architectures"]:
                setattr(self, key, value)
        self.p_dropout = p_dropout
        self.n_labels = n_labels
        self.bias = bias
        self.return_logits = return_logits
        self.pretrain_cfg = pretrain_cfg
        self.pretrained = pretrained


class ValueHead(nn.Module):

    def __init__(self, config: RewardModelConfig):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.p_dropout)
        self.score = layer_init(
            nn.Linear(config.hidden_size, config.n_labels),
            std=1 / np.sqrt(config.hidden_size + 1),
        )
        self.score = nn.Linear(config.hidden_size, config.n_labels)

    def forward(self, hidden_states: torch.Tensor, **kwargs: Any):
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        output = self.score(hidden_states)
        return output


class AutoModelForCausalLMWithRM(PreTrainedModel):
    config_class = RewardModelConfig

    def __init__(self, config: RewardModelConfig):
        super().__init__(config)
        self.config = config
        pretrain_cfg = config.pretrain_cfg
        pretrained = config.pretrained
        if pretrained:
            self.lm_backbone = AutoModelForCausalLM.from_pretrained(
                config.base_model, 
                config=config.base_config,
                **pretrain_cfg,
            )
        else:
            #hack for now
            if isinstance(config.base_config, dict):
                config.base_config = AutoConfig.from_pretrained(config.base_model, **config.base_config)
            self.lm_backbone = AutoModelForCausalLM.from_config(
                config.base_config,
                trust_remote_code=True,
            )
        self.value_head = ValueHead(config)
        
    def generate(self, *args: Any, **kwargs: Any):
        return self.lm_backbone.generate(**kwargs)

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
        # Note need to update vocab size in base config as well so lm_head modification happens
        self.config.base_config.vocab_size = new_num_tokens
        model_embeds = super().resize_token_embeddings(new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of)
        return model_embeds

    def set_input_embeddings(self, new_embeddings):
        return self.lm_backbone.set_input_embeddings(new_embeddings)

    def get_input_embeddings(self):
        return self.lm_backbone.get_input_embeddings()
    
    def set_output_embeddings(self, new_embeddings):
        return self.lm_backbone.set_output_embeddings(new_embeddings)

    def get_output_embeddings(self):
        return self.lm_backbone.get_output_embeddings()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Any] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ):
        output = self.lm_backbone(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=True,
            cache_position=cache_position,
        )
        scores = self.value_head(output.hidden_states[-1]).squeeze(-1) - self.config.bias

        logits = None
        if self.config.return_logits:
            logits = output.logits

        return SequenceClassifierOutput(
            loss=output.loss,
            scores=scores,
            logits=logits,
            past_key_values=output.past_key_values,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
        )


class ComposerHFSequenceClassification(HuggingFaceModel):
    
    """Configures a :class:`.HuggingFaceModel` around a Causal LM.

    Args:
        pretrained_model_name_or_path (str): The name of or local path to
            the HF Causal LM (e.g., `gpt2` to instantiate a GPT2LMHeadModel).
        config_overrides (dict, optional): An optional dictionary of keyword
            arguments that override the default configuration associated with
            cfg.pretrained_model_name_or_path.
        pretrained (bool): Whether to instantiate the model with pre-trained
            weights coming from cfg.pretrained_model_name_or_path. If ``True``,
            cfg.config_overrides must be compatible with the pre-trained weights.
        init_device ('cpu' | 'meta'): Which device, 'cpu' or 'meta', to
            initialize the model on. Currently, `meta` is only supported when
            cfg.pretrained is ``False``. Default: ``'cpu'``.
        peft_config (dict, optional): An optional dictionary of keyword arguments to be
            passed to the PeftConfig constructor. If provided, the model will be wrapped in a PeftModel.
        trust_remote_code (bool, optional): Whether to trust remote code when loading from Hugging Face
            Hub. Default: ``True``.
        use_auth_token (bool, optional): Whether to use the Hugging Face authentication token when
            loading from Hugging Face Hub. Default: ``False``.
        use_train_metrics (bool, optional): Whether to use training metrics. Default: ``True``.
        load_in_8bit (bool, optional): Whether to load the model in 8-bit mode. Default: ``False``.
        init_device (str, optional): Which device to initialize the model on. Default: ``'cpu'``.
        use_flash_attention_2 (bool, optional): Whether to use flash-attention 2. Default: ``False``.
        tokenizer (PreTrainedTokenizer): The tokenizer that the model will use.
    """

    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        pretrained_model_name_or_path: str,
        pretrained: bool = True,
        pretrained_lora_id_or_path: Optional[str] = None,
        trust_remote_code: bool = True,
        use_auth_token: bool = False,
        use_flash_attention_2: bool = False,
        load_in_8bit: bool = False,
        init_device: str = 'cpu',
        config_overrides: Optional[Dict[str, Any]] = None,
        peft_config: Optional[Dict[str, Any]] = None,
        use_train_metrics: bool = True,
        additional_train_metrics: Optional[List] = None,
        additional_eval_metrics: Optional[List] = None,
        return_lm_logits: Optional[bool] = False,
    ):

        config_overrides = config_overrides or {}

        model = ComposerHFSequenceClassification.build_inner_model(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            pretrained_lora_id_or_path=pretrained_lora_id_or_path,
            trust_remote_code=trust_remote_code,
            init_device=init_device,
            use_flash_attention_2=use_flash_attention_2,
            use_auth_token=use_auth_token,
            config_overrides=config_overrides,
            load_in_8bit=load_in_8bit,
            pretrained=pretrained,
            prepare_for_fsdp=True,
            return_lm_logits=return_lm_logits,
        )
        
        train_metrics, eval_metrics = ComposerHFSequenceClassification.build_metrics(
            use_train_metrics=use_train_metrics,
            additional_train_metrics=additional_train_metrics,
            additional_eval_metrics=additional_eval_metrics,
        )

        if peft_config is not None and not peft_installed:
            raise NotImplementedError("PEFT is not supported")

        peft_config_object = None
        if peft_config is not None:
            peft_config_object = self._get_peft_config(peft_config)

        # Set up config args for the model construction and base classes
        super().__init__(
            model=model,
            shift_labels=True,
            tokenizer=tokenizer,
            metrics=train_metrics,
            eval_metrics=eval_metrics,
            peft_config=peft_config_object,
            allow_embedding_resizing=True,
        )
        #self.model.config.vocab_size = len(self.tokenizer)
        #self.model.config.base_config.vocab_size = len(self.tokenizer)
        self.model.config.pretrained = False

    @staticmethod
    def build_metrics(
        use_train_metrics: bool,
        additional_train_metrics: Optional[List[str]] = None,
        additional_eval_metrics: Optional[List[str]] = None,
    ) -> Tuple[List[Metric], List[Metric]]:
        """Builds the training and evaluation metrics for the model.

        Args:
            use_train_metrics (bool): Whether to use training metrics.
            additional_train_metrics (Optional[List[str]]): Additional training metrics to include.
            additional_eval_metrics (Optional[List[str]]): Additional evaluation metrics to include.

        Returns:
            Tuple[List[Metric], List[Metric]]: A tuple containing the list of training metrics and evaluation metrics.
        """
        from llmfoundry.utils.builders import build_metric
        train_metric_names = additional_train_metrics if additional_train_metrics is not None else []
        eval_metric_names = additional_eval_metrics if additional_eval_metrics is not None else []
        train_metrics = [
            build_metric(metric, {}) for metric in train_metric_names
        ] if use_train_metrics else []
        eval_metrics = [
            build_metric(metric, {}) for metric in eval_metric_names
        ]
        return train_metrics, eval_metrics

    @staticmethod
    def build_inner_model(
        pretrained_model_name_or_path: str,
        pretrained_lora_id_or_path: Optional[str],
        trust_remote_code: bool,
        init_device: str,
        use_flash_attention_2: bool,
        use_auth_token: bool,
        config_overrides: Dict[str, Any],
        load_in_8bit: bool,
        pretrained: bool,
        prepare_for_fsdp: bool = False,
        return_lm_logits: bool = False,
    ) -> Union[PreTrainedModel, 'PeftModel']:
        """Builds the inner model for the ComposerHFCausalLM.

        Args:
            pretrained_model_name_or_path (str): The pretrained model name or path.
            pretrained_lora_id_or_path (Optional[str]): The pretrained LORA ID or path.
            trust_remote_code (bool): Whether to trust remote code.
            init_device (str): The initialization device.
            use_flash_attention_2 (bool): Whether to use flash attention 2.
            use_auth_token (bool): Whether to use an authentication token.
            config_overrides (Dict[str, Any]): The configuration overrides.
            load_in_8bit (bool): Whether to load in 8-bit.
            prepare_for_fsdp (bool, optional): Whether to prepare the model for FSDP wrapping. Default: False.

        Returns:
            Union[PreTrainedModel, 'PeftModel']: The built inner model.
            prepare_for_fsdp (bool): Whether to prepare the model for FSDP wrapping. Default: ``False``.
        """
        if not trust_remote_code and pretrained_model_name_or_path.startswith(
            'mosaicml/mpt',
        ):
            raise ValueError(
                'trust_remote_code must be set to True for MPT models. Without this, the MPT model code will come from the transformers library, '
                +
                'which is significantly slower and not compatible with the LLM foundry training code, rather than the code release by MosaicML.',
            )
        # Resolve "mixed" init device to either "cpu" or "meta"
        resolved_init_device = hf_get_init_device(init_device)
        requested_attention_implementation = 'flash_attention_2' if use_flash_attention_2 else 'eager'

        if use_flash_attention_2 and not is_flash_v2_installed():
            raise ValueError(
                'use_flash_attention_2 is set to True, but flash-attention 2 is not installed. '
                + 'Please `pip install llm-foundry[gpu]`.',
            )

        # Construct the Hugging Face config to use
        base_config = AutoConfig.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=trust_remote_code,
            token=True,
            attn_implementation=requested_attention_implementation,
            use_cache=False,  # Necessary due to https://github.com/huggingface/transformers/issues/28056
            #num_hidden_layers=2, hidden_dim=128, # For Testing
        )
        
        config = RewardModelConfig(
            base_model=pretrained_model_name_or_path,
            base_config=base_config,
            hidden_size=base_config.hidden_size,
            torch_dtype=base_config.torch_dtype,
            return_logits=return_lm_logits,
            vocab_size=base_config.vocab_size,
        )


        # This is not ideal, however Hugging Face's _autoset_attn_implementation function
        # forces you to load the model in fp16/bf16 if you want to use flash attention. Rather than loading
        # the model and then casting it back to fp32, we are monkeypatching their check.
        # https://github.com/huggingface/transformers/issues/28052
        def _autoset_attn_implementation_monkeypatch(
            cls,  # type: ignore
            config,  # type: ignore
            *args,  # type: ignore
            **kwargs,  # type: ignore
        ):  # type: ignore
            config._attn_implementation = requested_attention_implementation
            return config

        PreTrainedModel._autoset_attn_implementation = classmethod(
            _autoset_attn_implementation_monkeypatch,
        )

        # set config overrides
        for k, v in config_overrides.items():
            if not hasattr(config, k):
                raise ValueError(
                    f'config does not have attribute "{k}" to override ({k}: {v}).',
                )

            attr = getattr(config, k)
            # attempt to disallow typos in nested configs
            if isinstance(attr, Mapping):
                extra_keys = [_k for _k in v.keys() if _k not in attr.keys()]
                if extra_keys:
                    raise ValueError(
                        f'Config dict override got unknown keys. ' +
                        f'Extra keys: {extra_keys}. ' +
                        f'Expected (a subset of) keys: {list(attr.keys())}.',
                    )
                getattr(config, k).update(v)
            # necessary case to allow for rope_scaling to be overriden in llama config
            elif attr is None and isinstance(v, Mapping):
                setattr(config, k, {})
                getattr(config, k).update(v)
            elif isinstance(attr, PretrainedConfig):
                if not isinstance(v, Mapping):
                    raise ValueError(
                        f'Expected a dictionary for config override {k}, but got {v}.',
                    )

                for _k, _v in v.items():
                    if not hasattr(attr, _k):
                        raise ValueError(
                            f'config does not have attribute "{_k}" to override ({k}: {_k}: {_v}).',
                        )
                    setattr(attr, _k, _v)
            else:
                setattr(config, k, v)

        if hasattr(config, 'attn_config') and get_hf_config_value(
            config.attn_config,
            'seq_parallel_world_size',
        ) is not None:
            raise NotImplementedError(
                'Sequence Parallelism is not supported for HuggingFace models.',
            )

        # We need to have all non-zero local ranks be not-pretrained
        # Rank 0 will still be pretrained, and distribute the weights appropriately
        if dist.get_local_rank() != 0 and init_device == 'mixed':
            pretrained = False

        # Hugging Face copies the modules into the
        # transformers modules cache. On particular systems, this operation seems to cause contention between
        # the different processes. To avoid this contention, we first create the model (on meta device) on local rank
        # zero. This will set up the transformers model cache and avoid the future contention.
        if dist.get_local_rank() == 0:
            if os.path.isdir(pretrained_model_name_or_path):
                with init_empty_weights(include_buffers=False):
                    with warnings.catch_warnings():
                        warnings.simplefilter('ignore', UserWarning)
                        AutoModelForCausalLM.from_pretrained(
                            pretrained_model_name_or_path,
                            trust_remote_code=trust_remote_code,
                            token=True,
                            config=base_config,
                        )
            else:
                with init_empty_weights(include_buffers=False):
                    AutoModelForCausalLM.from_config(
                        base_config,
                        trust_remote_code=trust_remote_code,
                    )

        dist.barrier()

        # initialize the model on the correct device
        config.pretrained = pretrained
        if resolved_init_device == 'cpu':
            if pretrained:
                config.pretrain_cfg = {
                    "trust_remote_code": trust_remote_code,
                    "token": True,
                    "load_in_8bit": load_in_8bit,
                }
                model = AutoModelForCausalLMWithRM(config)
            else:
                config.pretrain_cfg = {
                    "trust_remote_code": trust_remote_code,
                }
                model = AutoModelForCausalLMWithRM(config)
        elif resolved_init_device == 'meta':
            if pretrained:
                raise ValueError(
                    'Setting cfg.pretrained=True is not supported when init_device="meta".',
                )
            with init_empty_weights(include_buffers=False):
                config.pretrain_cfg = {
                    "trust_remote_code": trust_remote_code,
                }
                model = AutoModelForCausalLMWithRM(config)
        else:
            raise ValueError(
                f'init_device="{init_device}" must be either "cpu" or "meta".',
            )

        signal_file_path = f'.node_{dist.get_node_rank()}_local_rank0_completed'
        if dist.get_local_rank() == 0:
            with open(signal_file_path, 'wb') as f:
                f.write(b'local_rank0_completed_download')

        # Avoid the collective call until the local rank zero has finished trying to download the checkpoint
        # so that we don't timeout for large downloads. This syncs all processes on the node
        with dist.local_rank_zero_download_and_wait(signal_file_path):
            # Then, wait to ensure every node has finished downloading the checkpoint
            dist.barrier()

        if dist.get_local_rank() == 0:
            os.remove(signal_file_path)

        # Hugging Face's weight tying does not succeed if the model is inited on meta device
        # so we manually apply the weight tying here
        if model.config.tie_word_embeddings and resolved_init_device == 'meta':
            model.tie_weights()

        if pretrained_lora_id_or_path is not None:
            """TODO not supported"""
            raise NotImplementedError("PEFT IS NOT SUPPORTED")
        
        if prepare_for_fsdp:
            # Note: We need to add the FSDP related attributes to the model AFTER the super init,
            # so that the (possible) embedding resizing doesn't destroy them
            prepare_hf_sequence_classification_model_for_fsdp(model, init_device)

            # This provides support for meta initialization when using FSDP
            model.param_init_fn = lambda module: model._init_weights(module)
        return model