File size: 15,657 Bytes
d153a2b
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b1a9a5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8b1a9a8d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687059482962909945, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/xNO6PjhHmjzZPQg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwVLDvVgscT9uGgW/Uh3dP4IEUb/1X8++83AWP1xs0b7n1cI/KOFkvicR1j+wvQo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADE07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD3E07o+OEeaPNk9CD8tSFs9qeqJO6lzXD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3648969  0.01883279 0.5321937 ]\n [0.3648969  0.01883279 0.5321937 ]\n [0.3648969  0.01883279 0.5321937 ]\n [0.3648969  0.01883279 0.5321937 ]]", "desired_goal": "[[-0.09537268  0.9420829  -0.51993454]\n [ 1.7274573  -0.81647503 -0.40502897]\n [ 0.58766097 -0.40902984  1.5221528 ]\n [-0.22351515  1.6723984   0.5419569 ]]", "observation": "[[0.3648969  0.01883279 0.5321937  0.05353563 0.00420888 0.05382124]\n [0.3648969  0.01883279 0.5321937  0.05353563 0.00420888 0.05382124]\n [0.3648969  0.01883279 0.5321937  0.05353563 0.00420888 0.05382124]\n [0.3648969  0.01883279 0.5321937  0.05353563 0.00420888 0.05382124]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZZ0OPh3AmTuI0oE+4Y9evfdGzL2FO849HnYFvhRHnb2us44+O1QPvpILsrxhanM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.13927229  0.00469209  0.25355935]\n [-0.05433643 -0.09974473  0.10069946]\n [-0.1303334  -0.07679573  0.2787146 ]\n [-0.13996975 -0.02173403  0.23771049]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINnaJ6q2B6r+UhpRSlIwBbJRLMowBdJRHQJkJdh6Skj51fZQoaAZoCWgPQwjiV6zhInfjv5SGlFKUaBVLMmgWR0CZCSQK8cuKdX2UKGgGaAloD0MIDtdqD3th8L+UhpRSlGgVSzJoFkdAmQjNZ/0/W3V9lChoBmgJaA9DCOy9+KI9Xt6/lIaUUpRoFUsyaBZHQJkIgRUWEbp1fZQoaAZoCWgPQwgy5xn7kg3sv5SGlFKUaBVLMmgWR0CZCtPqcEvCdX2UKGgGaAloD0MI38X7cftl6b+UhpRSlGgVSzJoFkdAmQqB3V09yXV9lChoBmgJaA9DCIUKDi+IyOq/lIaUUpRoFUsyaBZHQJkKK54GD+R1fZQoaAZoCWgPQwj8/PfgtQv1v5SGlFKUaBVLMmgWR0CZCd9lEqlQdX2UKGgGaAloD0MIGO5cGOnF5r+UhpRSlGgVSzJoFkdAmQwQTufEoHV9lChoBmgJaA9DCMZP4978huO/lIaUUpRoFUsyaBZHQJkLvjm0VrR1fZQoaAZoCWgPQwi7JqQ1Bh3kv5SGlFKUaBVLMmgWR0CZC2e/5+H8dX2UKGgGaAloD0MIqgt4mWGj27+UhpRSlGgVSzJoFkdAmQsbOVxCIHV9lChoBmgJaA9DCKN5AIv8euS/lIaUUpRoFUsyaBZHQJkNUl0HQhR1fZQoaAZoCWgPQwhjQWFQplHov5SGlFKUaBVLMmgWR0CZDQAmiQDFdX2UKGgGaAloD0MIbsFSXcBL6r+UhpRSlGgVSzJoFkdAmQyprULDynV9lChoBmgJaA9DCJm7lpAPeu+/lIaUUpRoFUsyaBZHQJkMXUH6dlN1fZQoaAZoCWgPQwjwTdNnB1zqv5SGlFKUaBVLMmgWR0CZDq/vv0AcdX2UKGgGaAloD0MI1EhL5e2I5L+UhpRSlGgVSzJoFkdAmQ5dyPuG9HV9lChoBmgJaA9DCF0XfnA+9e2/lIaUUpRoFUsyaBZHQJkOB1+y7f51fZQoaAZoCWgPQwjJIk28A7znv5SGlFKUaBVLMmgWR0CZDbrilzltdX2UKGgGaAloD0MISgosgCkD5L+UhpRSlGgVSzJoFkdAmQ/xD1Gsm3V9lChoBmgJaA9DCDNPrimQ2fG/lIaUUpRoFUsyaBZHQJkPnwZwXIl1fZQoaAZoCWgPQwhszsEzocngv5SGlFKUaBVLMmgWR0CZD0ihFmWddX2UKGgGaAloD0MIv7uVJTrL17+UhpRSlGgVSzJoFkdAmQ78cuJ1q3V9lChoBmgJaA9DCAdfmEwVjOi/lIaUUpRoFUsyaBZHQJkRKcI7eVN1fZQoaAZoCWgPQwiDvvT252Lyv5SGlFKUaBVLMmgWR0CZENe0G/vfdX2UKGgGaAloD0MI6j9rfvyl5L+UhpRSlGgVSzJoFkdAmRCBIOH313V9lChoBmgJaA9DCPvL7snDwuS/lIaUUpRoFUsyaBZHQJkQNOYYzi11fZQoaAZoCWgPQwgMyjSaXIzlv5SGlFKUaBVLMmgWR0CZEn31SOzZdX2UKGgGaAloD0MIUkfH1ciu0r+UhpRSlGgVSzJoFkdAmRIr6tT1kHV9lChoBmgJaA9DCOhpwCDpU+6/lIaUUpRoFUsyaBZHQJkR1YhdMTN1fZQoaAZoCWgPQwh1ApoIG572v5SGlFKUaBVLMmgWR0CZEYobGWD6dX2UKGgGaAloD0MIvhOzXgxl77+UhpRSlGgVSzJoFkdAmRO8u3+db3V9lChoBmgJaA9DCPqZet0iMNS/lIaUUpRoFUsyaBZHQJkTann+yZ91fZQoaAZoCWgPQwgxmL9C5gr1v5SGlFKUaBVLMmgWR0CZExQGfPHDdX2UKGgGaAloD0MIByeiX1u/6b+UhpRSlGgVSzJoFkdAmRLHs5XEInV9lChoBmgJaA9DCPhQoiWPp+W/lIaUUpRoFUsyaBZHQJkVI4zabnZ1fZQoaAZoCWgPQwhFnE6y1eXtv5SGlFKUaBVLMmgWR0CZFNIDoyKvdX2UKGgGaAloD0MI1V5E2zH177+UhpRSlGgVSzJoFkdAmRR7oKUmlnV9lChoBmgJaA9DCPDDQUKUL++/lIaUUpRoFUsyaBZHQJkULxri2lV1fZQoaAZoCWgPQwi0HOihtg36v5SGlFKUaBVLMmgWR0CZFnq3EyckdX2UKGgGaAloD0MIi28ofLaO7r+UhpRSlGgVSzJoFkdAmRYop6QeWHV9lChoBmgJaA9DCEhvuI/c2vK/lIaUUpRoFUsyaBZHQJkV0kZ75VR1fZQoaAZoCWgPQwhJ9Z1flKDpv5SGlFKUaBVLMmgWR0CZFYXgtOEedX2UKGgGaAloD0MIjEzAr5Fk8b+UhpRSlGgVSzJoFkdAmRfB4Uvf0nV9lChoBmgJaA9DCCiZnNoZZvG/lIaUUpRoFUsyaBZHQJkXb7pFCsx1fZQoaAZoCWgPQwgx6lp7n+r0v5SGlFKUaBVLMmgWR0CZFxkaMrEtdX2UKGgGaAloD0MIVkrP9BIj9L+UhpRSlGgVSzJoFkdAmRbM2BJ7LXV9lChoBmgJaA9DCAzohTsXxuS/lIaUUpRoFUsyaBZHQJkY+jdpItl1fZQoaAZoCWgPQwhl+5C3XD3wv5SGlFKUaBVLMmgWR0CZGKgeA/cGdX2UKGgGaAloD0MIwMsMG2W98L+UhpRSlGgVSzJoFkdAmRhRfWtlqnV9lChoBmgJaA9DCB3KUBVT6eu/lIaUUpRoFUsyaBZHQJkYBS3solV1fZQoaAZoCWgPQwiyKy0j9Z78v5SGlFKUaBVLMmgWR0CZGjq20AtGdX2UKGgGaAloD0MIqDXNO05R67+UhpRSlGgVSzJoFkdAmRnolIEr5XV9lChoBmgJaA9DCHEDPj+MkO2/lIaUUpRoFUsyaBZHQJkZkiC8OCp1fZQoaAZoCWgPQwh4DmWoiqngv5SGlFKUaBVLMmgWR0CZGUXRPXTWdX2UKGgGaAloD0MIEr73N2iv27+UhpRSlGgVSzJoFkdAmRtzcqOLi3V9lChoBmgJaA9DCJw1eF+Vi/i/lIaUUpRoFUsyaBZHQJkbIR15jYt1fZQoaAZoCWgPQwhClC9oIcH4v5SGlFKUaBVLMmgWR0CZGsrrPdEcdX2UKGgGaAloD0MImQ0yycgZ8L+UhpRSlGgVSzJoFkdAmRp+vECNj3V9lChoBmgJaA9DCCvCTUaV4e+/lIaUUpRoFUsyaBZHQJkcssqaw2V1fZQoaAZoCWgPQwgeM1AZ/z7ov5SGlFKUaBVLMmgWR0CZHGC2tuDSdX2UKGgGaAloD0MIweJw5lcz9b+UhpRSlGgVSzJoFkdAmRwKL0jC53V9lChoBmgJaA9DCCU/4les4fK/lIaUUpRoFUsyaBZHQJkbvd/J/5N1fZQoaAZoCWgPQwju0RvuI7fzv5SGlFKUaBVLMmgWR0CZHfv8ZUDMdX2UKGgGaAloD0MIveR/8nfv8b+UhpRSlGgVSzJoFkdAmR2p3s5XEXV9lChoBmgJaA9DCFiP+1brhPa/lIaUUpRoFUsyaBZHQJkdU13t8eF1fZQoaAZoCWgPQwiIY13cRkP4v5SGlFKUaBVLMmgWR0CZHQcH4XXRdX2UKGgGaAloD0MIkPeqlQm/8b+UhpRSlGgVSzJoFkdAmR9PtD2JznV9lChoBmgJaA9DCHx716AvPfO/lIaUUpRoFUsyaBZHQJke/bwjMV11fZQoaAZoCWgPQwi688RztoDcv5SGlFKUaBVLMmgWR0CZHqdUbT+edX2UKGgGaAloD0MI0y8Rb53/7L+UhpRSlGgVSzJoFkdAmR5bFCLMtHV9lChoBmgJaA9DCFG/C1uzFfG/lIaUUpRoFUsyaBZHQJkgkwwj+rF1fZQoaAZoCWgPQwirsu+K4B8AwJSGlFKUaBVLMmgWR0CZIEDNQj2SdX2UKGgGaAloD0MIJNHLKJbb5b+UhpRSlGgVSzJoFkdAmR/qXWvr4XV9lChoBmgJaA9DCFbVy+80GeG/lIaUUpRoFUsyaBZHQJkfnhaTwDx1fZQoaAZoCWgPQwj0MR8Q6Az3v5SGlFKUaBVLMmgWR0CZIc6po9LYdX2UKGgGaAloD0MIa7kzEwwn87+UhpRSlGgVSzJoFkdAmSF8r/bTMXV9lChoBmgJaA9DCIyd8BKcuvO/lIaUUpRoFUsyaBZHQJkhJn7Hhjx1fZQoaAZoCWgPQwhzMJsAw/Lsv5SGlFKUaBVLMmgWR0CZINoakyk9dX2UKGgGaAloD0MIufqxSX4E8L+UhpRSlGgVSzJoFkdAmSMosAeaKHV9lChoBmgJaA9DCNu/stKk1Pa/lIaUUpRoFUsyaBZHQJki1qtYB/91fZQoaAZoCWgPQwizfchbrn70v5SGlFKUaBVLMmgWR0CZIoCIUJv6dX2UKGgGaAloD0MIbY0IxsEl9r+UhpRSlGgVSzJoFkdAmSI0D6nBL3V9lChoBmgJaA9DCNbgfVUuVPy/lIaUUpRoFUsyaBZHQJkklMRHww11fZQoaAZoCWgPQwheSfJc34fev5SGlFKUaBVLMmgWR0CZJEK2rn1WdX2UKGgGaAloD0MIt9CVCFT/77+UhpRSlGgVSzJoFkdAmSPsXenAI3V9lChoBmgJaA9DCKH0hZDzfvi/lIaUUpRoFUsyaBZHQJkjoKXv6TJ1fZQoaAZoCWgPQwgVi98UVur1v5SGlFKUaBVLMmgWR0CZJfDqGDcudX2UKGgGaAloD0MIaeId4ElL9b+UhpRSlGgVSzJoFkdAmSWe4kNWl3V9lChoBmgJaA9DCMU9lj50QfC/lIaUUpRoFUsyaBZHQJklSG5+Ytx1fZQoaAZoCWgPQwgTfqmfNxX7v5SGlFKUaBVLMmgWR0CZJPv8IiTudX2UKGgGaAloD0MIcCL6tfXT4L+UhpRSlGgVSzJoFkdAmSdHYHxBmnV9lChoBmgJaA9DCGUdjq7SvQHAlIaUUpRoFUsyaBZHQJkm9WT5ftx1fZQoaAZoCWgPQwiBzqRN1T32v5SGlFKUaBVLMmgWR0CZJp8QqZtvdX2UKGgGaAloD0MIWDz1SIPb57+UhpRSlGgVSzJoFkdAmSZS1E3KjnV9lChoBmgJaA9DCFrUJ7nDJvS/lIaUUpRoFUsyaBZHQJkogOjIq9Z1fZQoaAZoCWgPQwi6hhkaTwTnv5SGlFKUaBVLMmgWR0CZKC7SApazdX2UKGgGaAloD0MIK9oc5zZh5L+UhpRSlGgVSzJoFkdAmSfYOlO45XV9lChoBmgJaA9DCJTeN772zPG/lIaUUpRoFUsyaBZHQJkni8nNPgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Gym": "0.21.0"}}