File size: 26,211 Bytes
f08eddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modified from diffusers==0.29.2
#
# ==============================================================================
from typing import Dict, Optional, Tuple, Union
from dataclasses import dataclass

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config

try:
    # This diffusers is modified and packed in the mirror.
    from diffusers.loaders import FromOriginalVAEMixin
except ImportError:
    # Use this to be compatible with the original diffusers.
    from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    Attention,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D


@dataclass
class DecoderOutput2(BaseOutput):
    sample: torch.FloatTensor
    posterior: Optional[DiagonalGaussianDistribution] = None


class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
    r"""

    A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos.



    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented

    for all models (such as downloading or saving).

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        in_channels: int = 3,

        out_channels: int = 3,

        down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),

        up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),

        block_out_channels: Tuple[int] = (64,),

        layers_per_block: int = 1,

        act_fn: str = "silu",

        latent_channels: int = 4,

        norm_num_groups: int = 32,

        sample_size: int = 32,

        sample_tsize: int = 64,

        scaling_factor: float = 0.18215,

        force_upcast: float = True,

        spatial_compression_ratio: int = 8,

        time_compression_ratio: int = 4,

        mid_block_add_attention: bool = True,

    ):
        super().__init__()

        self.time_compression_ratio = time_compression_ratio

        self.encoder = EncoderCausal3D(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
            time_compression_ratio=time_compression_ratio,
            spatial_compression_ratio=spatial_compression_ratio,
            mid_block_add_attention=mid_block_add_attention,
        )

        self.decoder = DecoderCausal3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
            time_compression_ratio=time_compression_ratio,
            spatial_compression_ratio=spatial_compression_ratio,
            mid_block_add_attention=mid_block_add_attention,
        )

        self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
        self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)

        self.use_slicing = False
        self.use_spatial_tiling = False
        self.use_temporal_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_tsize = sample_tsize
        self.tile_latent_min_tsize = sample_tsize // time_compression_ratio

        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
        self.tile_overlap_factor = 0.25

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
            module.gradient_checkpointing = value

    def enable_temporal_tiling(self, use_tiling: bool = True):
        self.use_temporal_tiling = use_tiling

    def disable_temporal_tiling(self):
        self.enable_temporal_tiling(False)

    def enable_spatial_tiling(self, use_tiling: bool = True):
        self.use_spatial_tiling = use_tiling

    def disable_spatial_tiling(self):
        self.enable_spatial_tiling(False)

    def enable_tiling(self, use_tiling: bool = True):
        r"""

        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to

        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow

        processing larger videos.

        """
        self.enable_spatial_tiling(use_tiling)
        self.enable_temporal_tiling(use_tiling)

    def disable_tiling(self):
        r"""

        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing

        decoding in one step.

        """
        self.disable_spatial_tiling()
        self.disable_temporal_tiling()

    def enable_slicing(self):
        r"""

        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to

        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""

        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing

        decoding in one step.

        """
        self.use_slicing = False

    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(

        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False

    ):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor, _remove_lora=_remove_lora)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """

        Disables custom attention processors and sets the default attention implementation.

        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor, _remove_lora=True)

    @apply_forward_hook
    def encode(

        self, x: torch.FloatTensor, return_dict: bool = True

    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """

        Encode a batch of images/videos into latents.



        Args:

            x (`torch.FloatTensor`): Input batch of images/videos.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.



        Returns:

                The latent representations of the encoded images/videos. If `return_dict` is True, a

                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.

        """
        assert len(x.shape) == 5, "The input tensor should have 5 dimensions."

        if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
            return self.temporal_tiled_encode(x, return_dict=return_dict)

        if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.spatial_tiled_encode(x, return_dict=return_dict)

        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self.encoder(x)

        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        assert len(z.shape) == 5, "The input tensor should have 5 dimensions."

        if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
            return self.temporal_tiled_decode(z, return_dict=return_dict)

        if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.spatial_tiled_decode(z, return_dict=return_dict)

        z = self.post_quant_conv(z)
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    @apply_forward_hook
    def decode(

        self, z: torch.FloatTensor, return_dict: bool = True, generator=None

    ) -> Union[DecoderOutput, torch.FloatTensor]:
        """

        Decode a batch of images/videos.



        Args:

            z (`torch.FloatTensor`): Input batch of latent vectors.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.



        Returns:

            [`~models.vae.DecoderOutput`] or `tuple`:

                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is

                returned.



        """
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
        for x in range(blend_extent):
            b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent)
        return b

    def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput:
        r"""Encode a batch of images/videos using a tiled encoder.



        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several

        steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is

        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the

        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the

        output, but they should be much less noticeable.



        Args:

            x (`torch.FloatTensor`): Input batch of images/videos.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.



        Returns:

            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:

                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain

                `tuple` is returned.

        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split video into tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[-2], overlap_size):
            row = []
            for j in range(0, x.shape[-1], overlap_size):
                tile = x[:, :, :, i: i + self.tile_sample_min_size, j: j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))

        moments = torch.cat(result_rows, dim=-2)
        if return_moments:
            return moments

        posterior = DiagonalGaussianDistribution(moments)
        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""

        Decode a batch of images/videos using a tiled decoder.



        Args:

            z (`torch.FloatTensor`): Input batch of latent vectors.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.



        Returns:

            [`~models.vae.DecoderOutput`] or `tuple`:

                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is

                returned.

        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[-2], overlap_size):
            row = []
            for j in range(0, z.shape[-1], overlap_size):
                tile = z[:, :, :, i: i + self.tile_latent_min_size, j: j + self.tile_latent_min_size]
                tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=-2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:

        B, C, T, H, W = x.shape
        overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
        t_limit = self.tile_latent_min_tsize - blend_extent

        # Split the video into tiles and encode them separately.
        row = []
        for i in range(0, T, overlap_size):
            tile = x[:, :, i: i + self.tile_sample_min_tsize + 1, :, :]
            if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size):
                tile = self.spatial_tiled_encode(tile, return_moments=True)
            else:
                tile = self.encoder(tile)
                tile = self.quant_conv(tile)
            if i > 0:
                tile = tile[:, :, 1:, :, :]
            row.append(tile)
        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_extent)
                result_row.append(tile[:, :, :t_limit, :, :])
            else:
                result_row.append(tile[:, :, :t_limit + 1, :, :])

        moments = torch.cat(result_row, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        # Split z into overlapping tiles and decode them separately.

        B, C, T, H, W = z.shape
        overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
        t_limit = self.tile_sample_min_tsize - blend_extent

        row = []
        for i in range(0, T, overlap_size):
            tile = z[:, :, i: i + self.tile_latent_min_tsize + 1, :, :]
            if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size):
                decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
            else:
                tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
            if i > 0:
                decoded = decoded[:, :, 1:, :, :]
            row.append(decoded)
        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_extent)
                result_row.append(tile[:, :, :t_limit, :, :])
            else:
                result_row.append(tile[:, :, :t_limit + 1, :, :])

        dec = torch.cat(result_row, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(

        self,

        sample: torch.FloatTensor,

        sample_posterior: bool = False,

        return_dict: bool = True,

        return_posterior: bool = False,

        generator: Optional[torch.Generator] = None,

    ) -> Union[DecoderOutput2, torch.FloatTensor]:
        r"""

        Args:

            sample (`torch.FloatTensor`): Input sample.

            sample_posterior (`bool`, *optional*, defaults to `False`):

                Whether to sample from the posterior.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.

        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            if return_posterior:
                return (dec, posterior)
            else:
                return (dec,)
        if return_posterior:
            return DecoderOutput2(sample=dec, posterior=posterior)
        else:
            return DecoderOutput2(sample=dec)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """

        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,

        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>

        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>



        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)