File size: 1,168 Bytes
63fe875 f6305e7 63fe875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
model_name: "Wheat Anomaly Detection Model"
tags:
- pytorch
- resnet
- agriculture
- anomaly-detection
license: apache-2.0
library_name: pytorch
datasets:
- your_huggingface_username/your_dataset_name
---
# Wheat Anomaly Detection Model
This model is a PyTorch-based ResNet model trained to detect anomalies in wheat crops, such as diseases, pests, and nutrient deficiencies.
## How to Load the Model
To load the trained model, use the following code:
```python
from transformers import AutoModelForImageClassification
import torch
# Load the pre-trained model
model = AutoModelForImageClassification.from_pretrained('your_huggingface_username/your_model_name')
# Put the model in evaluation mode
model.eval()
# Example of making a prediction
image_path = "path_to_your_image.jpg" # Replace with your image path
image = Image.open(image_path)
inputs = transform(image).unsqueeze(0) # Apply the necessary transformations to the image
inputs = inputs.to(device)
# Make a prediction
with torch.no_grad():
outputs = model(inputs)
predicted_class = torch.argmax(outputs.logits, dim=1)
print(f"Predicted Class: {predicted_class.item()}")
|