jayanta's picture
Update metadata with huggingface_hub
2783908
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-face-recognition
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.999957997311828
            name: Accuracy
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: custom
          type: custom
          split: test
        metrics:
          - type: precision
            value: 1
            name: Precision
          - type: roc_auc
            value: 0.908055
            name: AUC
          - type: recall
            value: 1
            name: Recall

vit-base-patch16-224-in21k-face-recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0015
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0368 1.0 372 0.0346 1.0000
0.0094 2.0 744 0.0092 1.0000
0.0046 3.0 1116 0.0047 1.0000
0.0029 4.0 1488 0.0029 1.0
0.0022 5.0 1860 0.0023 0.9999
0.0017 6.0 2232 0.0017 1.0
0.0015 7.0 2604 0.0015 1.0
0.0014 8.0 2976 0.0015 1.0000

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.13.2
  • Tokenizers 0.11.0