File size: 18,667 Bytes
c6481b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import copy
import warnings
from typing import Any, Dict, List, Optional, Union

import torch
import torchvision.transforms.functional as F
from transformers import BatchEncoding
from transformers.processing_utils import ProcessorMixin


def to_tensor(x):
    """
    Convert a nested structure of numpy arrays or tensors (including lists and tuples of them)
    into a tensor. Assumes that all nested structures can be converted into a tensor directly.

    :param x: Nested structure containing numpy arrays, tensors, lists, or tuples
    :return: torch.Tensor
    """
    with warnings.catch_warnings():
        # Convert specific warning to an error
        warnings.filterwarnings(
            "error",
            category=UserWarning,
            message=".*Creating a tensor from a list of numpy.ndarrays is extremely slow.*",
        )
        try:
            return torch.Tensor(x)
        except Exception:
            if isinstance(x, list):
                return torch.stack([to_tensor(item) for item in x])
            else:
                raise TypeError("Unsupported type for conversion to tensor")


def truncate(
    encoding: Dict[str, List[List[Any]]], max_length: int, truncation_side: str = "right", preserve: bool = False
) -> Dict[str, List[List[Any]]]:
    """
    Truncate the sequences in the encoding to the specified maximum length.

    This function is designed to process batch of sequences represented in the encoding dictionary.
    Depending on the chosen strategy, sequences are either truncated with loss of residual data or with preservation
    and incorporation of residual data into the batch.

    Args:
        encoding (`Mapping`):
            A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences.
            The sequences are expected to be lists.
        max_length (`int`):
            The maximum allowable length for the sequences.
        truncation_side (`str`, **optional**):
            The strategy to use for truncation. Can be `"left"` or `"right"`. Defaults to `"right"`.
        preserve (`bool`, **optional**):
            Whether to preserve the residual data by adding them as new sequences in the batch. Defaults to `False`.

    Returns:
        `Dict[str, List[List[Any]]]`:
            A dictionary with the same keys as the input `encoding`, containing the truncated batch of sequences.
            If `preserve` is set to `True`, the batch size may increase due to the addition of new sequences formed
            from the residual data.

    Example:

        >>> encoding = {'feature1': [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]}
        >>> truncate(encoding, 3, preserve=False)
        {'feature1': [[1, 2, 3], [6, 7, 8]]}

        >>> truncate(encoding, 3, preserve=True)
        {'feature1': [[1, 2, 3], [4, 5], [6, 7, 8], [9, 10]]}
    """
    truncated_encoding = {}

    for key, sequences in encoding.items():
        if not all(isinstance(seq, list) for seq in sequences):
            raise TypeError(f"All sequences under key {key} should be of type list.")

        truncated_sequences = []

        for seq in sequences:
            if len(seq) <= max_length:
                truncated_sequences.append(seq)
                continue

            if preserve:  # truncate and append the residual as new sequences
                if truncation_side == "right":
                    truncated_sequences.extend([seq[i : i + max_length] for i in range(0, len(seq), max_length)])
                elif truncation_side == "left":
                    n = len(seq) // max_length + int(len(seq) % max_length > 0)
                    low, high = len(seq) - n * max_length, len(seq)
                    truncated_sequences.extend(
                        [seq[max(0, i - max_length) : i] for i in range(high, low, -max_length)]
                    )
                else:
                    raise ValueError(f"Invalid truncation_side: {truncation_side}")
            else:  # simply truncate the sequence
                if truncation_side == "right":
                    truncated_sequences.append(seq[:max_length])
                elif truncation_side == "left":
                    truncated_sequences.append(seq[-max_length:])

        truncated_encoding[key] = truncated_sequences

    return truncated_encoding


def pad(encoding: Dict[str, List[List[Any]]], target_length: int) -> Dict[str, List[List[Any]]]:
    """
    Pad the sequences in the encoding to the specified maximum length.

    This function is designed to process batch of sequences represented in the encoding dictionary.
    The padding value is set to be the first element in the sequence.

    Args:
        encoding (`Mapping`):
            A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences.
            The sequences are expected to be lists.
        target_length (`int`):
            The desired length for the sequences.

    Returns:
        `Dict[str, List[List[Any]]]`:
            A dictionary with the same keys as the input `encoding`, containing the padded batch of sequences.
            An additional key `attention_mask` is added to the dictionary to indicate the positions of the non-padding
            elements with 1s and the padding elements with 0s. If the input `encoding` already contains an
            `attention_mask` key, the corresponding mask will be updated such that the original masking is preserved,
            and the newly added padding elements will be masked with 0s. In other words, the resulting
            `attention_mask` is a logical "AND" between the provided mask and the mask created due to padding, ensuring
            that any element masked originally remains masked.

    Example:

        >>> encoding = {'feature1': [[1, 2], [3, 4, 5]]}
        >>> pad(encoding, 4)
        {'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 1, 0, 0], [1, 1, 1, 0]]}

        >>> encoding = {'feature1': [[1, 2], [3, 4, 5]], "attention_mask": [[1, 0], [0, 1, 1]]}
        >>> pad(encoding, 4)
        {'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 0, 0, 0], [0, 1, 1, 0]]}
    """
    padded_encoding = {}

    for key, sequences in encoding.items():
        if not all(isinstance(seq, (list, torch.Tensor)) for seq in sequences):
            raise TypeError(f"All sequences under key {key} should be of type list or tensor.")
        if key == "attention_mask":  # attention_mask is handled separately
            continue

        padded_sequences = []
        pad_mask = []

        for seq in sequences:
            pad_len = target_length - len(seq)
            padded_seq = list(seq) + [seq[0]] * max(0, pad_len)
            mask = [1] * len(seq) + [0] * max(0, pad_len)

            padded_sequences.append(padded_seq)
            pad_mask.append(mask)

        padded_encoding[key] = padded_sequences

    if "attention_mask" in encoding:
        padded_encoding["attention_mask"] = [
            [a * (b[i] if i < len(b) else 0) for i, a in enumerate(row)]
            for row, b in zip(pad_mask, encoding["attention_mask"])
        ]
    else:
        padded_encoding["attention_mask"] = pad_mask

    return padded_encoding


class JatProcessor(ProcessorMixin):
    r"""
    JAT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.

    [`JatProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
    [`~JatProcessor.__call__`] and [`~JatProcessor.decode`] for more information.

    Args:
        image_processor ([`AutoImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`]):
            The tokenizer is a required input.
    """
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    DONT_TRUNCATE_OR_PAD = {"pixel_values"}  # Or, a better name for this would be

    def __init__(self, image_processor, tokenizer):
        super().__init__(image_processor, tokenizer)
        self.current_processor = self.image_processor

    def _truncate_and_pad(
        self,
        encoding: dict,
        padding: Union[bool, str],
        truncation: Union[bool, str],
        truncation_side: str = "right",
        max_length: Optional[int] = None,
    ) -> dict:
        # If max_length is not provided, use the maximum length accepted by the model.
        if max_length is None:
            max_length = self.tokenizer.model_max_length

        # Exclude keys that we don't want to truncate or pad.
        excluded = {key: value for key, value in encoding.items() if key in self.DONT_TRUNCATE_OR_PAD}
        encoding = {key: value for key, value in encoding.items() if key not in self.DONT_TRUNCATE_OR_PAD}

        # Apply Truncation
        if truncation in [True, "lossy"]:
            encoding = truncate(encoding, max_length, truncation_side, preserve=False)
        elif truncation == "preserve":
            encoding = truncate(encoding, max_length, truncation_side, preserve=True)
        elif truncation in [False, "do_not_truncate"]:
            pass
        else:
            raise ValueError("Invalid truncation strategy:" + str(truncation))

        # Apply Padding
        if padding in [True, "longest"]:
            target_length = max(len(seq) for sequences in encoding.values() for seq in sequences)
            encoding = pad(encoding, target_length)
        elif padding == "max_length":
            encoding = pad(encoding, max_length)
        elif padding in [False, "do_not_pad"]:
            pass
        else:
            raise ValueError("Invalid padding strategy:" + str(padding))

        # Add back the excluded keys.
        encoding.update(excluded)

        # Particular case, we handle the conversion to tensor of image_observations, as the format used
        # (list of tensors) is not properly handled by the BatchEncoding class:
        if "image_observations" in encoding:
            encoding["image_observations"] = to_tensor(encoding["image_observations"])

        return encoding

    def __call__(
        self,
        text=None,
        images=None,
        continuous_observations=None,
        discrete_observations=None,
        text_observations=None,
        image_observations=None,
        continuous_actions=None,
        discrete_actions=None,
        rewards=None,
        return_tensors=None,
        **kwargs,
    ):
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`,
                    `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            continuous_observations (`List[List[List[float]]]`):
                The continuous observations or batch of continuous observations to be encoded.
            discrete_observations (`List[List[List[int]]]`):
                The discrete observations or batch of discrete observations to be encoded.
            text_observations (`List[List[str]]`):
                The text observations or batch of text observations to be encoded.
            image_observations (`List[List[PIL.Image.Image]]`, `List[List[np.ndarray]]`, `List[List[torch.Tensor]]`):
                The image observations or batch of image observations to be encoded.
            continuous_actions (`List[List[List[float]]]`):
                The continuous actions or batch of continuous actions to be encoded.
            discrete_actions (``List[List[int]]`):
                The discrete actions or batch of discrete actions to be encoded.
            rewards (``List[List[float]]`):
                The rewards or batch of rewards to be encoded.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        # we truncate and pad ourselves so we need to pass padding=False and truncation=False to the tokenizer
        padding = kwargs.pop("padding", False)
        truncation = kwargs.pop("truncation", False)
        truncation_side = kwargs.pop("truncation_side", "right")
        max_length = kwargs.pop("max_length", None)

        # Ensure that the input is batched
        if text is not None and not isinstance(text, list):
            text = [text]

        encoding = {}
        if text is not None:
            encoding["input_ids"] = self.tokenizer(text, **kwargs)["input_ids"]
        if images is not None:
            encoding["pixel_values"] = self.image_processor(images, **kwargs).pixel_values
        if continuous_observations is not None:
            encoding["continuous_observations"] = copy.deepcopy(continuous_observations)
        if discrete_observations is not None:
            encoding["discrete_observations"] = copy.deepcopy(discrete_observations)
        if text_observations is not None:
            if "discrete_observations" not in encoding:
                raise ValueError("discrete_observations must be provided if text_observations is provided")
            for batch_idx, sequence in enumerate(text_observations):
                encoded_text = self.tokenizer(sequence, max_length=64, padding="max_length")["input_ids"]
                for timestep, text_tokens in enumerate(encoded_text):
                    encoding["discrete_observations"][batch_idx][timestep].extend(text_tokens)
        if image_observations is not None:
            image_observations = [[(F.to_tensor(im) - 0.5) / 0.5 for im in ep] for ep in image_observations]
            encoding["image_observations"] = image_observations
        if continuous_actions is not None:
            encoding["continuous_actions"] = copy.deepcopy(continuous_actions)
        if discrete_actions is not None:
            encoding["discrete_actions"] = copy.deepcopy(discrete_actions)

        if rewards is not None:
            encoding["rewards"] = [[float(r) for r in ep] for ep in rewards]

        # Handle image+text case, need to reduce the max_len as the image and text will be concatenated
        if text is not None and images is not None:
            if max_length is None:
                max_length = self.tokenizer.model_max_length
            max_length -= (224 // 16) ** 2  # substract the number of image tokens
        elif (
            continuous_observations is not None
            or discrete_observations is not None
            or text_observations is not None
            or image_observations is not None
        ):
            if max_length is None:
                max_length = self.tokenizer.model_max_length
            max_length //= 2  # observations and actions are interleaved

        encoding = self._truncate_and_pad(encoding, padding, truncation, truncation_side, max_length)

        return BatchEncoding(encoding, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def pad(self, *args, **kwargs):
        inputs = args[0]
        keys = [key for key in inputs[0].keys() if inputs[0][key] is not None]
        inputs = {key: [arg[key] for arg in inputs] for key in keys}
        elmt = next(iter(inputs.values()))
        if isinstance(elmt[0], torch.Tensor) and not isinstance(elmt, torch.Tensor):
            encoding = {key: torch.stack(inputs[key]) for key in inputs.keys()}
        else:
            encoding = self._truncate_and_pad(
                inputs, padding=kwargs.get("padding", False), truncation=False, max_length=kwargs.get("max_length")
            )

        return BatchEncoding(encoding, tensor_type=kwargs.get("return_tensors"))

    @property
    def model_input_names(self):
        return [
            "input_ids",
            "attention_mask",
            "pixel_values",
            "continuous_observations",
            "discrete_observations",
            "image_observations",
            "continuous_actions",
            "discrete_actions",
            "rewards",
        ]


JatProcessor.register_for_auto_class("AutoProcessor")