File size: 18,667 Bytes
c6481b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import copy
import warnings
from typing import Any, Dict, List, Optional, Union
import torch
import torchvision.transforms.functional as F
from transformers import BatchEncoding
from transformers.processing_utils import ProcessorMixin
def to_tensor(x):
"""
Convert a nested structure of numpy arrays or tensors (including lists and tuples of them)
into a tensor. Assumes that all nested structures can be converted into a tensor directly.
:param x: Nested structure containing numpy arrays, tensors, lists, or tuples
:return: torch.Tensor
"""
with warnings.catch_warnings():
# Convert specific warning to an error
warnings.filterwarnings(
"error",
category=UserWarning,
message=".*Creating a tensor from a list of numpy.ndarrays is extremely slow.*",
)
try:
return torch.Tensor(x)
except Exception:
if isinstance(x, list):
return torch.stack([to_tensor(item) for item in x])
else:
raise TypeError("Unsupported type for conversion to tensor")
def truncate(
encoding: Dict[str, List[List[Any]]], max_length: int, truncation_side: str = "right", preserve: bool = False
) -> Dict[str, List[List[Any]]]:
"""
Truncate the sequences in the encoding to the specified maximum length.
This function is designed to process batch of sequences represented in the encoding dictionary.
Depending on the chosen strategy, sequences are either truncated with loss of residual data or with preservation
and incorporation of residual data into the batch.
Args:
encoding (`Mapping`):
A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences.
The sequences are expected to be lists.
max_length (`int`):
The maximum allowable length for the sequences.
truncation_side (`str`, **optional**):
The strategy to use for truncation. Can be `"left"` or `"right"`. Defaults to `"right"`.
preserve (`bool`, **optional**):
Whether to preserve the residual data by adding them as new sequences in the batch. Defaults to `False`.
Returns:
`Dict[str, List[List[Any]]]`:
A dictionary with the same keys as the input `encoding`, containing the truncated batch of sequences.
If `preserve` is set to `True`, the batch size may increase due to the addition of new sequences formed
from the residual data.
Example:
>>> encoding = {'feature1': [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]}
>>> truncate(encoding, 3, preserve=False)
{'feature1': [[1, 2, 3], [6, 7, 8]]}
>>> truncate(encoding, 3, preserve=True)
{'feature1': [[1, 2, 3], [4, 5], [6, 7, 8], [9, 10]]}
"""
truncated_encoding = {}
for key, sequences in encoding.items():
if not all(isinstance(seq, list) for seq in sequences):
raise TypeError(f"All sequences under key {key} should be of type list.")
truncated_sequences = []
for seq in sequences:
if len(seq) <= max_length:
truncated_sequences.append(seq)
continue
if preserve: # truncate and append the residual as new sequences
if truncation_side == "right":
truncated_sequences.extend([seq[i : i + max_length] for i in range(0, len(seq), max_length)])
elif truncation_side == "left":
n = len(seq) // max_length + int(len(seq) % max_length > 0)
low, high = len(seq) - n * max_length, len(seq)
truncated_sequences.extend(
[seq[max(0, i - max_length) : i] for i in range(high, low, -max_length)]
)
else:
raise ValueError(f"Invalid truncation_side: {truncation_side}")
else: # simply truncate the sequence
if truncation_side == "right":
truncated_sequences.append(seq[:max_length])
elif truncation_side == "left":
truncated_sequences.append(seq[-max_length:])
truncated_encoding[key] = truncated_sequences
return truncated_encoding
def pad(encoding: Dict[str, List[List[Any]]], target_length: int) -> Dict[str, List[List[Any]]]:
"""
Pad the sequences in the encoding to the specified maximum length.
This function is designed to process batch of sequences represented in the encoding dictionary.
The padding value is set to be the first element in the sequence.
Args:
encoding (`Mapping`):
A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences.
The sequences are expected to be lists.
target_length (`int`):
The desired length for the sequences.
Returns:
`Dict[str, List[List[Any]]]`:
A dictionary with the same keys as the input `encoding`, containing the padded batch of sequences.
An additional key `attention_mask` is added to the dictionary to indicate the positions of the non-padding
elements with 1s and the padding elements with 0s. If the input `encoding` already contains an
`attention_mask` key, the corresponding mask will be updated such that the original masking is preserved,
and the newly added padding elements will be masked with 0s. In other words, the resulting
`attention_mask` is a logical "AND" between the provided mask and the mask created due to padding, ensuring
that any element masked originally remains masked.
Example:
>>> encoding = {'feature1': [[1, 2], [3, 4, 5]]}
>>> pad(encoding, 4)
{'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 1, 0, 0], [1, 1, 1, 0]]}
>>> encoding = {'feature1': [[1, 2], [3, 4, 5]], "attention_mask": [[1, 0], [0, 1, 1]]}
>>> pad(encoding, 4)
{'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 0, 0, 0], [0, 1, 1, 0]]}
"""
padded_encoding = {}
for key, sequences in encoding.items():
if not all(isinstance(seq, (list, torch.Tensor)) for seq in sequences):
raise TypeError(f"All sequences under key {key} should be of type list or tensor.")
if key == "attention_mask": # attention_mask is handled separately
continue
padded_sequences = []
pad_mask = []
for seq in sequences:
pad_len = target_length - len(seq)
padded_seq = list(seq) + [seq[0]] * max(0, pad_len)
mask = [1] * len(seq) + [0] * max(0, pad_len)
padded_sequences.append(padded_seq)
pad_mask.append(mask)
padded_encoding[key] = padded_sequences
if "attention_mask" in encoding:
padded_encoding["attention_mask"] = [
[a * (b[i] if i < len(b) else 0) for i, a in enumerate(row)]
for row, b in zip(pad_mask, encoding["attention_mask"])
]
else:
padded_encoding["attention_mask"] = pad_mask
return padded_encoding
class JatProcessor(ProcessorMixin):
r"""
JAT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
[`JatProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
[`~JatProcessor.__call__`] and [`~JatProcessor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`]):
The image processor is a required input.
tokenizer ([`AutoTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
DONT_TRUNCATE_OR_PAD = {"pixel_values"} # Or, a better name for this would be
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def _truncate_and_pad(
self,
encoding: dict,
padding: Union[bool, str],
truncation: Union[bool, str],
truncation_side: str = "right",
max_length: Optional[int] = None,
) -> dict:
# If max_length is not provided, use the maximum length accepted by the model.
if max_length is None:
max_length = self.tokenizer.model_max_length
# Exclude keys that we don't want to truncate or pad.
excluded = {key: value for key, value in encoding.items() if key in self.DONT_TRUNCATE_OR_PAD}
encoding = {key: value for key, value in encoding.items() if key not in self.DONT_TRUNCATE_OR_PAD}
# Apply Truncation
if truncation in [True, "lossy"]:
encoding = truncate(encoding, max_length, truncation_side, preserve=False)
elif truncation == "preserve":
encoding = truncate(encoding, max_length, truncation_side, preserve=True)
elif truncation in [False, "do_not_truncate"]:
pass
else:
raise ValueError("Invalid truncation strategy:" + str(truncation))
# Apply Padding
if padding in [True, "longest"]:
target_length = max(len(seq) for sequences in encoding.values() for seq in sequences)
encoding = pad(encoding, target_length)
elif padding == "max_length":
encoding = pad(encoding, max_length)
elif padding in [False, "do_not_pad"]:
pass
else:
raise ValueError("Invalid padding strategy:" + str(padding))
# Add back the excluded keys.
encoding.update(excluded)
# Particular case, we handle the conversion to tensor of image_observations, as the format used
# (list of tensors) is not properly handled by the BatchEncoding class:
if "image_observations" in encoding:
encoding["image_observations"] = to_tensor(encoding["image_observations"])
return encoding
def __call__(
self,
text=None,
images=None,
continuous_observations=None,
discrete_observations=None,
text_observations=None,
image_observations=None,
continuous_actions=None,
discrete_actions=None,
rewards=None,
return_tensors=None,
**kwargs,
):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`,
`List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
continuous_observations (`List[List[List[float]]]`):
The continuous observations or batch of continuous observations to be encoded.
discrete_observations (`List[List[List[int]]]`):
The discrete observations or batch of discrete observations to be encoded.
text_observations (`List[List[str]]`):
The text observations or batch of text observations to be encoded.
image_observations (`List[List[PIL.Image.Image]]`, `List[List[np.ndarray]]`, `List[List[torch.Tensor]]`):
The image observations or batch of image observations to be encoded.
continuous_actions (`List[List[List[float]]]`):
The continuous actions or batch of continuous actions to be encoded.
discrete_actions (``List[List[int]]`):
The discrete actions or batch of discrete actions to be encoded.
rewards (``List[List[float]]`):
The rewards or batch of rewards to be encoded.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
# we truncate and pad ourselves so we need to pass padding=False and truncation=False to the tokenizer
padding = kwargs.pop("padding", False)
truncation = kwargs.pop("truncation", False)
truncation_side = kwargs.pop("truncation_side", "right")
max_length = kwargs.pop("max_length", None)
# Ensure that the input is batched
if text is not None and not isinstance(text, list):
text = [text]
encoding = {}
if text is not None:
encoding["input_ids"] = self.tokenizer(text, **kwargs)["input_ids"]
if images is not None:
encoding["pixel_values"] = self.image_processor(images, **kwargs).pixel_values
if continuous_observations is not None:
encoding["continuous_observations"] = copy.deepcopy(continuous_observations)
if discrete_observations is not None:
encoding["discrete_observations"] = copy.deepcopy(discrete_observations)
if text_observations is not None:
if "discrete_observations" not in encoding:
raise ValueError("discrete_observations must be provided if text_observations is provided")
for batch_idx, sequence in enumerate(text_observations):
encoded_text = self.tokenizer(sequence, max_length=64, padding="max_length")["input_ids"]
for timestep, text_tokens in enumerate(encoded_text):
encoding["discrete_observations"][batch_idx][timestep].extend(text_tokens)
if image_observations is not None:
image_observations = [[(F.to_tensor(im) - 0.5) / 0.5 for im in ep] for ep in image_observations]
encoding["image_observations"] = image_observations
if continuous_actions is not None:
encoding["continuous_actions"] = copy.deepcopy(continuous_actions)
if discrete_actions is not None:
encoding["discrete_actions"] = copy.deepcopy(discrete_actions)
if rewards is not None:
encoding["rewards"] = [[float(r) for r in ep] for ep in rewards]
# Handle image+text case, need to reduce the max_len as the image and text will be concatenated
if text is not None and images is not None:
if max_length is None:
max_length = self.tokenizer.model_max_length
max_length -= (224 // 16) ** 2 # substract the number of image tokens
elif (
continuous_observations is not None
or discrete_observations is not None
or text_observations is not None
or image_observations is not None
):
if max_length is None:
max_length = self.tokenizer.model_max_length
max_length //= 2 # observations and actions are interleaved
encoding = self._truncate_and_pad(encoding, padding, truncation, truncation_side, max_length)
return BatchEncoding(encoding, tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def pad(self, *args, **kwargs):
inputs = args[0]
keys = [key for key in inputs[0].keys() if inputs[0][key] is not None]
inputs = {key: [arg[key] for arg in inputs] for key in keys}
elmt = next(iter(inputs.values()))
if isinstance(elmt[0], torch.Tensor) and not isinstance(elmt, torch.Tensor):
encoding = {key: torch.stack(inputs[key]) for key in inputs.keys()}
else:
encoding = self._truncate_and_pad(
inputs, padding=kwargs.get("padding", False), truncation=False, max_length=kwargs.get("max_length")
)
return BatchEncoding(encoding, tensor_type=kwargs.get("return_tensors"))
@property
def model_input_names(self):
return [
"input_ids",
"attention_mask",
"pixel_values",
"continuous_observations",
"discrete_observations",
"image_observations",
"continuous_actions",
"discrete_actions",
"rewards",
]
JatProcessor.register_for_auto_class("AutoProcessor")
|