File size: 13,463 Bytes
e3d550e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b09ce9ea050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b09ce9ea0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b09ce9ea170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b09ce9ea200>", "_build": "<function ActorCriticPolicy._build at 0x7b09ce9ea290>", "forward": "<function ActorCriticPolicy.forward at 0x7b09ce9ea320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b09ce9ea3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b09ce9ea440>", "_predict": "<function ActorCriticPolicy._predict at 0x7b09ce9ea4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b09ce9ea560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b09ce9ea5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b09ce9ea680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b09ce9e3000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684367457681537609, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoXwj17DIu6rj/vO4HTajWfMQK7xmNiNAAAgD8AAIA/QKenPfbQa7r2mQG5Ip8bM4kyJrtk1xQ4AACAPwAAgD8zpvo9yTkzP62wTzyuwZq+721bPdFPmL0AAAAAAAAAAGY2AzvDcUu6RfLWO6CyVDfo0sk5sAYsNgAAgD8AAIA/mplcvR+tyLktF2k7nvu5Nt0BSTuDWLU1AACAPwAAgD+a4bg7XDtqutucxTvU13g1t5pGuRMAbzQAAIA/AACAPwBK8jz2JDa6JiQbOjz0mDTSd6C6a0U2uQAAgD8AAIA/ANuJvBTwpLpzpXu7eiuNOJRcJTrOEQg6AACAPwAAgD9m3Gq8hRO8uYQHwrpv0be23zfNOogz5TkAAIA/AACAP2ZKfzzc4Bq8dh7ovCpjCr3TLnW8CtjRvQAAgD8AAIA/ZqY/uylsdLo77d+4vr+9s2bkNbu49gI4AACAPwAAgD8A36i8XMtqulGOgTtruGa2vJRSuxanlLoAAIA/AACAP4CucD0UtoS6YfOcO6tcBDfFiAU74E20ugAAgD8AAIA/zcRVvVzbM7p69b03sc6rMqYmnjoeKeC2AACAPwAAgD8a5dm9ro2MujrHdzn1eG00lauouuTlj7gAAIA/AACAPwDDvz09ekC5dcX9ua+q7LT8t0C7lkYWOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/FUS7GvOiMAWyUS8CMAXSUR0CSGqECNjsldX2UKGgGR0BjHOjGkvboaAdN6ANoCEdAkhq8t9QXRHV9lChoBkdAYH8ZWq94/2gHTegDaAhHQJIbpMPBi1B1fZQoaAZHQG3nOZCv5gxoB00RAWgIR0CSI3VQQ+UydX2UKGgGR0AgDdJrcj7iaAdL0GgIR0CSI9QRPGhmdX2UKGgGR0BB1KJ/G2kSaAdL5mgIR0CSJ7ZiuuA7dX2UKGgGR0BhwPerMkhSaAdN6ANoCEdAkihuJHiFTXV9lChoBkdAYK99n9NvfmgHTegDaAhHQJIuIBsANod1fZQoaAZHQGPQEFnqVyFoB03oA2gIR0CSMBokRjBmdX2UKGgGR0AySm1YyO7yaAdL22gIR0CSRqPszEaVdX2UKGgGR0AXWjSG8EmqaAdNRAFoCEdAkklALNOdoXV9lChoBkdAY1iSg5BC2WgHTegDaAhHQJJP1XDFZPl1fZQoaAZHQFylulXRw61oB03oA2gIR0CSU940Mw10dX2UKGgGR0A7RoSL61staAdNXAFoCEdAkliMTJyQxXV9lChoBkdAZSEIMSbpeWgHTegDaAhHQJJZe7ROUMZ1fZQoaAZHQGNfi3ocJdBoB03oA2gIR0CSX6EBbOeKdX2UKGgGR0BhwcT8HfMwaAdN6ANoCEdAkmBQQL/jsHV9lChoBkdAXRJAu7HyVmgHTegDaAhHQJJiqtjkMkR1fZQoaAZHQGJB2C/XXiBoB03oA2gIR0CSZOZFG5MDdX2UKGgGR0BgLKc/dIoWaAdN6ANoCEdAkmZfGQ0XQHV9lChoBkdARiTbYbsF+2gHS95oCEdAkmfWs7uDz3V9lChoBkdAPGoIF/x2CGgHTTsBaAhHQJJojQhOgxt1fZQoaAZHQGOQuiWVu79oB03oA2gIR0CSazwx33YddX2UKGgGR0BaZaaXrt3OaAdN6ANoCEdAkmxSZF5OanV9lChoBkdAZXWQDmr8zmgHTegDaAhHQJJ1swfyPMl1fZQoaAZHQFxnA4GUwBZoB03oA2gIR0CSey2sJY1YdX2UKGgGR0BauVHBk7OnaAdN6ANoCEdAkoIJDRc/uHV9lChoBkdAXNlF5OafBmgHTegDaAhHQJKLsF1SwW51fZQoaAZHQBM6AWi1y/9oB005AWgIR0CSn1A7PppwdX2UKGgGR0BaoKpo9LYgaAdN6ANoCEdAkp+01AJLNHV9lChoBkdAYrM9dNWU8mgHTegDaAhHQJKmritJWeZ1fZQoaAZHQBKwkLQXyiFoB0vEaAhHQJKt6uA7Ppp1fZQoaAZHQFz6rFfiPyVoB03oA2gIR0CSr8mReTmodX2UKGgGR0BB0L5ZbILgaAdLxmgIR0CStQlrdnCgdX2UKGgGR0BhmSWzF+/haAdN6ANoCEdAkrdRq9GqgnV9lChoBkdAXpuXkYGdJGgHTegDaAhHQJK3/itJWeZ1fZQoaAZHQGHlYHHFPzpoB03oA2gIR0CSulkeZG8VdX2UKGgGR0BhmoZOzposaAdN6ANoCEdAkryHWattAXV9lChoBkdAXGF/G2kSEmgHTegDaAhHQJK99/kNnXd1fZQoaAZHQGN2uoHcDbJoB03oA2gIR0CSv28TzunddX2UKGgGR0BkOaDmKZUlaAdN6ANoCEdAksAe6unuRnV9lChoBkdAZIx/smfGuWgHTegDaAhHQJLCjIZIg/11fZQoaAZHQGC0eXqqwQloB03oA2gIR0CSw6D0lJHzdX2UKGgGR0BoMK2a2F37aAdN6ANoCEdAktHCBwuM/HV9lChoBkdAXnxJ17pmmWgHTegDaAhHQJLY3YJ3PiV1fZQoaAZHQGETDZ13dKxoB03oA2gIR0CS4t55Z8rqdX2UKGgGR0BjldLSNOuaaAdN6ANoCEdAkuW91dPcjHV9lChoBkdAYPk2phnanWgHTegDaAhHQJMHvQHAymB1fZQoaAZHQDkXUwztTk1oB0vyaAhHQJMITSJCSid1fZQoaAZHQGJ1VVYISlFoB03oA2gIR0CTCcH+6y0KdX2UKGgGR0Bjkwm5UcXFaAdN6ANoCEdAkw9Tn7pFC3V9lChoBkdAX8m6f8MuvmgHTegDaAhHQJMRcaDPGAF1fZQoaAZHQGDVqCpWFOBoB03oA2gIR0CTEheFL39KdX2UKGgGR0BiU95fMOf/aAdN6ANoCEdAkxRJnctXgnV9lChoBkdAYPIUpNKywGgHTegDaAhHQJMWTIDHOr11fZQoaAZHQGKg/ATIvJ1oB03oA2gIR0CTF59hZyMldX2UKGgGR0BiYaf4AS39aAdN6ANoCEdAkxjqB7NSqHV9lChoBkdAYymGQjlgdGgHTegDaAhHQJMZhVrAP/d1fZQoaAZHQGGqbJnxri5oB03oA2gIR0CTG8hlDneSdX2UKGgGR0BuehgE2YOUaAdNLAFoCEdAkxwhnBciW3V9lChoBkdAZGC078vVVmgHTegDaAhHQJMcsjeKsMl1fZQoaAZHQENX/5LytmtoB0vmaAhHQJMeIy0rsjV1fZQoaAZHQDhUW/JvHcVoB0uoaAhHQJMh6NaQmu11fZQoaAZHQGOGn6Mzdk9oB03oA2gIR0CTKaTaTOgQdX2UKGgGR0BiEVnZkCmuaAdN6ANoCEdAkzAr5M10knV9lChoBkdAYcfUMG5c1WgHTegDaAhHQJM7npIMBp51fZQoaAZHQGBweoUBXCFoB03oA2gIR0CTXCCJGe+VdX2UKGgGR0Bm1bOu7pV0aAdN6ANoCEdAk1ymLgn+h3V9lChoBkdAY105H3Dej2gHTegDaAhHQJNjUSBbwBp1fZQoaAZHQGBwDASFoL5oB03oA2gIR0CTZXUr08NhdX2UKGgGR0Bg3B2r4nF6aAdN6ANoCEdAk2igjD8+A3V9lChoBkdAYupyCnP3SWgHTegDaAhHQJNq9eAuqWF1fZQoaAZHQGRpfs3Q2MtoB03oA2gIR0CTbHbVSXMRdX2UKGgGR0BhT2dkJ8fFaAdN6ANoCEdAk2347A+IM3V9lChoBkdAYjKOz6ab4WgHTegDaAhHQJNxZYlpoK51fZQoaAZHQGNT1NxlxwRoB03oA2gIR0CTcdEn9ehPdX2UKGgGR0BkC/OKO1fFaAdN6ANoCEdAk3J9MfzSTnV9lChoBkdAYq46mwaBJGgHTegDaAhHQJN08zAN5MV1fZQoaAZHQGV5jWkJrtVoB03oA2gIR0CTePHbAUL2dX2UKGgGR0BhAvTTfBN3aAdN6ANoCEdAk4DBSYPXkHV9lChoBkdAXz1DlYEGJWgHTegDaAhHQJOHa20AtFt1fZQoaAZHQGSG9kauOjtoB03oA2gIR0CTk8JbMX7+dX2UKGgGR0Bh0u65Gz8haAdN6ANoCEdAk7Wp+lTFVHV9lChoBkdAZTBcnmaH9GgHTegDaAhHQJO2NdHDrJN1fZQoaAZHQGQ2mZE2HcloB03oA2gIR0CTvRO4XoC/dX2UKGgGR0BelLq6e5FxaAdN6ANoCEdAk79VAZ88cXV9lChoBkdAY+DC9h7VrmgHTegDaAhHQJPCgQQL/jt1fZQoaAZHQGUUCOvMbFVoB03oA2gIR0CTxOXZoPCmdX2UKGgGR0BiNA95hSccaAdN6ANoCEdAk8ZgR9PUKHV9lChoBkdAY0xXXAdn02gHTegDaAhHQJPH41O0svt1fZQoaAZHQE4UvHtF8XxoB00iAWgIR0CTyhfNA1NydX2UKGgGR0BinI0Q9RrKaAdN6ANoCEdAk8taPsAvMHV9lChoBkdAY1QsRxtHhGgHTegDaAhHQJPLw5YHPeJ1fZQoaAZHQGGotqxkd3loB03oA2gIR0CTzG0G/vfCdX2UKGgGR0Bj9Bk9U0emaAdN6ANoCEdAk83zwH7gsXV9lChoBkdAYkmJvYODrmgHTegDaAhHQJPRkWk8A7x1fZQoaAZHQDYCb/ffoA5oB0vcaAhHQJPYRib2Dg91fZQoaAZHQGNkAOSW7e5oB03oA2gIR0CT2Ee5Fw1jdX2UKGgGR0BiiSfzz3AVaAdN6ANoCEdAk94bDuSfUXV9lChoBkdAYXj15jYqXmgHTegDaAhHQJPosiA2AG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTE5LWQ1OGI3NDFiNTYxNT6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}