File size: 1,883 Bytes
cd6a9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3247
- Accuracy: 0.8114

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 350  | 0.4073          | 0.8069   |
| 0.4154        | 2.0   | 700  | 0.4134          | 0.8192   |
| 0.2369        | 3.0   | 1050 | 0.4933          | 0.8133   |
| 0.2369        | 4.0   | 1400 | 0.7105          | 0.7994   |
| 0.1121        | 5.0   | 1750 | 1.0014          | 0.7881   |
| 0.0633        | 6.0   | 2100 | 1.0510          | 0.8036   |
| 0.0633        | 7.0   | 2450 | 1.1647          | 0.8074   |
| 0.0331        | 8.0   | 2800 | 1.2433          | 0.8012   |
| 0.0205        | 9.0   | 3150 | 1.3184          | 0.8055   |
| 0.0107        | 10.0  | 3500 | 1.3247          | 0.8114   |


### Framework versions

- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3