File size: 2,329 Bytes
dfa6a55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: asr_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# asr_model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2363
- Wer: 0.5153
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.4621 | 2.0 | 1000 | 0.4702 | 0.9741 |
| 0.4612 | 4.0 | 2000 | 0.4621 | 0.9741 |
| 0.4458 | 6.0 | 3000 | 0.4464 | 0.9714 |
| 0.384 | 8.0 | 4000 | 0.3853 | 0.8235 |
| 0.3065 | 10.0 | 5000 | 0.3166 | 0.7829 |
| 0.2861 | 12.0 | 6000 | 0.2809 | 0.6802 |
| 0.248 | 14.0 | 7000 | 0.2677 | 0.6051 |
| 0.2449 | 16.0 | 8000 | 0.2541 | 0.5778 |
| 0.2298 | 18.0 | 9000 | 0.2480 | 0.5710 |
| 0.2281 | 20.0 | 10000 | 0.2418 | 0.5505 |
| 0.216 | 22.0 | 11000 | 0.2420 | 0.5340 |
| 0.2083 | 24.0 | 12000 | 0.2380 | 0.5253 |
| 0.1957 | 26.0 | 13000 | 0.2380 | 0.5209 |
| 0.1985 | 28.0 | 14000 | 0.2360 | 0.5181 |
| 0.2078 | 30.0 | 15000 | 0.2363 | 0.5153 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|