ai-image-detect / README.md
jacoballessio's picture
Update README.md
71e54ce verified
|
raw
history blame
1.5 kB
---
license: apache-2.0
---
This is a simple AI image detection model utilizing visual transformers trained on the CIFake dataset.
Example usage:
```python
import torch
from PIL import Image
from torchvision import transforms
from transformers import ViTForImageClassification, ViTImageProcessor
# Load the trained model
model_path = 'vit_model.pth'
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
model.classifier = torch.nn.Linear(model.classifier.in_features, 2)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# Define the image preprocessing pipeline
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
def predict(image_path, model, preprocess):
# Load and preprocess the image
image = Image.open(image_path).convert('RGB')
inputs = preprocess(image).unsqueeze(0)
# Perform inference
with torch.no_grad():
outputs = model(inputs).logits
predicted_label = torch.argmax(outputs).item()
# Map the predicted label to the corresponding class
label_map = {0: 'FAKE', 1: 'REAL'}
predicted_class = label_map[predicted_label]
return predicted_class
# Example usage
image_paths = [
'path/to/image.jpg',
'path/to/image.jpg',
'path/to/image.jpg'
]
for image_path in image_paths:
predicted_class = predict(image_path, model, preprocess)
print(f'Predicted class: {predicted_class}', image_path)
```