File size: 2,108 Bytes
ecbaa7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: stable-baselines3
tags:
- BipedalWalkerHardcore-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DDPG
results:
- metrics:
- type: mean_reward
value: -132.89 +/- 24.41
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BipedalWalkerHardcore-v3
type: BipedalWalkerHardcore-v3
---
# **DDPG** Agent playing **BipedalWalkerHardcore-v3**
This is a trained model of a **DDPG** agent playing **BipedalWalkerHardcore-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo ddpg --env BipedalWalkerHardcore-v3 -orga jackoyoungblood -f logs/
python enjoy.py --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/ -orga jackoyoungblood
```
## Hyperparameters
```python
OrderedDict([('buffer_size', 200000),
('gamma', 0.98),
('gradient_steps', -1),
('learning_rate', 0.001),
('learning_starts', 10000),
('n_timesteps', 100000.0),
('noise_std', 0.1),
('noise_type', 'normal'),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(net_arch=[400, 300])'),
('train_freq', [1, 'episode']),
('normalize', False)])
```
|