File size: 2,108 Bytes
8c0d573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-base-finetuned-Adapter-en-ar-mlm-0.15-large-29OCT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-Adapter-en-ar-mlm-0.15-large-29OCT
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2667
- Model Preparation Time: 0.0044
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|
| 3.9064 | 0.2498 | 1000 | 3.2366 | 0.0044 |
| 3.0641 | 0.4995 | 2000 | 2.7403 | 0.0044 |
| 2.8162 | 0.7493 | 3000 | 2.5485 | 0.0044 |
| 2.7054 | 0.9990 | 4000 | 2.4384 | 0.0044 |
| 2.6108 | 1.2488 | 5000 | 2.3627 | 0.0044 |
| 2.5357 | 1.4985 | 6000 | 2.3141 | 0.0044 |
| 2.5089 | 1.7483 | 7000 | 2.2847 | 0.0044 |
| 2.4931 | 1.9980 | 8000 | 2.2667 | 0.0044 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.1.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|