metadata
license: apache-2.0
base_model: dima806/deepfake_vs_real_image_detection
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: realFake-food
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8767123287671232
realFake-food
This model is a fine-tuned version of dima806/deepfake_vs_real_image_detection on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3944
- Accuracy: 0.8767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1549 | 1.9231 | 100 | 0.2681 | 0.9178 |
0.0406 | 3.8462 | 200 | 0.3944 | 0.8767 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1