metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned-indian-food
results: []
finetuned-indian-food
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the indian_food_images dataset. It achieves the following results on the evaluation set:
- Loss: 0.2867
- Accuracy: 0.9267
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0192 | 0.3003 | 100 | 0.9248 | 0.8480 |
0.635 | 0.6006 | 200 | 0.5917 | 0.8863 |
0.6523 | 0.9009 | 300 | 0.5134 | 0.8799 |
0.4247 | 1.2012 | 400 | 0.3983 | 0.9044 |
0.4393 | 1.5015 | 500 | 0.4119 | 0.8980 |
0.4631 | 1.8018 | 600 | 0.3752 | 0.9107 |
0.2992 | 2.1021 | 700 | 0.3469 | 0.9129 |
0.3 | 2.4024 | 800 | 0.3157 | 0.9203 |
0.2372 | 2.7027 | 900 | 0.3210 | 0.9192 |
0.2447 | 3.0030 | 1000 | 0.3140 | 0.9224 |
0.2209 | 3.3033 | 1100 | 0.3034 | 0.9160 |
0.2641 | 3.6036 | 1200 | 0.2896 | 0.9277 |
0.0954 | 3.9039 | 1300 | 0.2867 | 0.9267 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1