File size: 2,641 Bytes
cbf6e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: other
datasets:
- tiiuae/falcon-refinedweb
- bigcode/the-stack-github-issues
- bigcode/commitpackft
- bigcode/starcoderdata
- EleutherAI/proof-pile-2
- meta-math/MetaMathQA
language:
- en
tags:
- causal-lm
- code
- llama-cpp
- gguf-my-repo
metrics:
- code_eval
library_name: transformers
base_model: stabilityai/stable-code-3b
model-index:
- name: stabilityai/stable-code-3b
  results:
  - task:
      type: text-generation
    dataset:
      name: MultiPL-HumanEval (Python)
      type: nuprl/MultiPL-E
    metrics:
    - type: pass@1
      value: 32.4
      name: pass@1
      verified: false
    - type: pass@1
      value: 30.9
      name: pass@1
      verified: false
    - type: pass@1
      value: 32.1
      name: pass@1
      verified: false
    - type: pass@1
      value: 32.1
      name: pass@1
      verified: false
    - type: pass@1
      value: 24.2
      name: pass@1
      verified: false
    - type: pass@1
      value: 23.0
      name: pass@1
      verified: false
---

# AIronMind/stable-code-3b-Q4_K_M-GGUF
This model was converted to GGUF format from [`stabilityai/stable-code-3b`](https://huggingface.co/stabilityai/stable-code-3b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/stabilityai/stable-code-3b) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo AIronMind/stable-code-3b-Q4_K_M-GGUF --hf-file stable-code-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo AIronMind/stable-code-3b-Q4_K_M-GGUF --hf-file stable-code-3b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/stable-code-3b-Q4_K_M-GGUF --hf-file stable-code-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo AIronMind/stable-code-3b-Q4_K_M-GGUF --hf-file stable-code-3b-q4_k_m.gguf -c 2048
```