File size: 10,304 Bytes
f5210ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25785e2
 
 
 
 
 
 
f5210ab
 
 
 
 
 
 
 
 
25785e2
 
 
 
 
 
 
 
 
 
f5210ab
 
 
 
25785e2
bf7f6a8
 
 
25785e2
 
 
 
 
 
f5210ab
 
25785e2
f5210ab
25785e2
f5210ab
 
25785e2
 
 
 
 
 
 
 
f5210ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List

import torch
from diffusers import (
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    EulerAncestralDiscreteScheduler,
)
from safetensors.torch import load_file
from torch import autocast

# https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints
# https://huggingface.co/docs/inference-endpoints/guides/custom_handler


# if local avoid repo url
LOCAL = False
PREFIX_URL = ""
if not LOCAL:
    PREFIX_URL = "https://huggingface.co/isatis/kw/"


# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if device.type != "cuda":
    raise ValueError("need to run on GPU")


class EndpointHandler:
    LORA_PATHS = {
        "hairdetailer": PREFIX_URL + "lora/hairdetailer.safetensors",
        "lora_leica": PREFIX_URL + "lora/lora_leica.safetensors",
        "epiNoiseoffset_v2": PREFIX_URL + "lora/epiNoiseoffset_v2.safetensors",
        "MBHU-TT2FRS": PREFIX_URL + "lora/MBHU-TT2FRS.safetensors",
        "ShinyOiledSkin_v20": PREFIX_URL + "lora/ShinyOiledSkin_v20-LoRA.safetensors",
        "polyhedron_new_skin_v1.1": PREFIX_URL
        + "lora/polyhedron_new_skin_v1.1.safetensors",
        "detailed_eye-10": PREFIX_URL + "lora/detailed_eye-10.safetensors",
        "add_detail": PREFIX_URL + "lora/add_detail.safetensors",
        "MuscleGirl_v1": PREFIX_URL + "lora/MuscleGirl_v1.safetensors",
    }

    TEXTUAL_INVERSION = [
        {
            "weight_name": PREFIX_URL + "embeddings/EasyNegative.safetensors",
            "token": "easynegative",
        },
        {
            "weight_name": PREFIX_URL + "embeddings/EasyNegative.safetensors",
            "token": "EasyNegative",
        },
        {"weight_name": PREFIX_URL + "embeddings/badhandv4.pt", "token": "badhandv4"},
        {
            "weight_name": PREFIX_URL + "embeddings/bad-artist-anime.pt",
            "token": "bad-artist-anime",
        },
        {"weight_name": PREFIX_URL + "embeddings/NegfeetV2.pt", "token": "NegfeetV2"},
        {
            "weight_name": PREFIX_URL + "embeddings/ng_deepnegative_v1_75t.pt",
            "token": "ng_deepnegative_v1_75t",
        },
        {
            "weight_name": PREFIX_URL + "embeddings/ng_deepnegative_v1_75t.pt",
            "token": "NG_DeepNegative_V1_75T",
        },
        {
            "weight_name": PREFIX_URL + "embeddings/bad-hands-5.pt",
            "token": "bad-hands-5",
        },
    ]

    def __init__(self, path="."):
        # load the optimized model
        self.pipe = DiffusionPipeline.from_pretrained(
            path,
            custom_pipeline="lpw_stable_diffusion",  # avoid 77 token limit
            torch_dtype=torch.float16,  # accelerate render
        )
        self.pipe = self.pipe.to(device)

        # DPM++ 2M SDE Karras
        # increase step to avoid high contrast num_inference_steps=30
        self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            self.pipe.scheduler.config,
            use_karras_sigmas=True,
            algorithm_type="sde-dpmsolver++",
        )

        # Mode boulardus
        self.pipe.safety_checker = None

        # Load negative embeddings to avoid bad hands, etc
        self.load_embeddings()

        # Load default Lora models
        self.pipe = self.load_selected_loras(
            [
                ("polyhedron_new_skin_v1.1", 0.35),  # nice Skin
                ("detailed_eye-10", 0.3),  # nice eyes
                ("add_detail", 0.4),  # detailed pictures
                ("MuscleGirl_v1", 0.3),  # shape persons
            ],
        )

        # boosts performance by another 20%
        self.pipe.enable_xformers_memory_efficient_attention()
        self.pipe.enable_attention_slicing()

    def load_lora(self, pipeline, lora_path, lora_weight=0.5):
        state_dict = load_file(lora_path)
        LORA_PREFIX_UNET = "lora_unet"
        LORA_PREFIX_TEXT_ENCODER = "lora_te"

        alpha = lora_weight
        visited = []

        for key in state_dict:
            state_dict[key] = state_dict[key].to(device)

        # directly update weight in diffusers model
        for key in state_dict:
            # as we have set the alpha beforehand, so just skip
            if ".alpha" in key or key in visited:
                continue

            if "text" in key:
                layer_infos = (
                    key.split(".")[0]
                    .split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
                    .split("_")
                )
                curr_layer = pipeline.text_encoder
            else:
                layer_infos = (
                    key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
                )
                curr_layer = pipeline.unet

            # find the target layer
            temp_name = layer_infos.pop(0)
            while len(layer_infos) > -1:
                try:
                    curr_layer = curr_layer.__getattr__(temp_name)
                    if len(layer_infos) > 0:
                        temp_name = layer_infos.pop(0)
                    elif len(layer_infos) == 0:
                        break
                except Exception:
                    if len(temp_name) > 0:
                        temp_name += "_" + layer_infos.pop(0)
                    else:
                        temp_name = layer_infos.pop(0)

            # org_forward(x) + lora_up(lora_down(x)) * multiplier
            pair_keys = []
            if "lora_down" in key:
                pair_keys.append(key.replace("lora_down", "lora_up"))
                pair_keys.append(key)
            else:
                pair_keys.append(key)
                pair_keys.append(key.replace("lora_up", "lora_down"))

            # update weight
            if len(state_dict[pair_keys[0]].shape) == 4:
                weight_up = (
                    state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
                )
                weight_down = (
                    state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
                )
                curr_layer.weight.data += alpha * torch.mm(
                    weight_up, weight_down
                ).unsqueeze(2).unsqueeze(3)
            else:
                weight_up = state_dict[pair_keys[0]].to(torch.float32)
                weight_down = state_dict[pair_keys[1]].to(torch.float32)
                curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)

            # update visited list
            for item in pair_keys:
                visited.append(item)

        return pipeline

    def load_embeddings(self):
        """Load textual inversions, avoid bad prompts"""
        for model in EndpointHandler.TEXTUAL_INVERSION:
            self.pipe.load_textual_inversion(
                ".", weight_name=model["weight_name"], token=model["token"]
            )

    def load_selected_loras(self, selections):
        """Load Loras models, can lead to marvelous creations"""
        for model_name, weight in selections:
            lora_path = EndpointHandler.LORA_PATHS[model_name]
            self.pipe = self.load_lora(
                pipeline=self.pipe, lora_path=lora_path, lora_weight=weight
            )
        return self.pipe

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`dict`:. base64 encoded image
        """
        global device

        # Which Lora do we load ?
        # selected_models = [
        #     ("ShinyOiledSkin_v20", 0.3),
        #     ("MBHU-TT2FRS", 0.5),
        #     ("hairdetailer", 0.5),
        #     ("lora_leica", 0.5),
        #     ("epiNoiseoffset_v2", 0.5),
        # ]

        # 1. Verify input arguments
        required_fields = [
            "prompt",
            "negative_prompt",
            "width",
            "num_inference_steps",
            "height",
            "seed",
            "guidance_scale",
        ]

        missing_fields = [field for field in required_fields if field not in data]

        if missing_fields:
            return {
                "flag": "error",
                "message": f"Missing fields: {', '.join(missing_fields)}",
            }

        # Now extract the fields
        prompt = data["prompt"]
        negative_prompt = data["negative_prompt"]
        loras_model = data.pop("loras_model", None)
        seed = data["seed"]
        width = data["width"]
        num_inference_steps = data["num_inference_steps"]
        height = data["height"]
        guidance_scale = data["guidance_scale"]

        # USe this to add automatically some negative prompts
        forced_negative = (
            negative_prompt
            + """easynegative, badhandv4, bad-artist-anime, NegfeetV2, ng_deepnegative_v1_75t, bad-hands-5  """
        )

        # Set the generator seed if provided
        generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None

        # Load the provided Lora models
        if loras_model:
            self.pipe = self.load_selected_loras(loras_model)

        try:
            # 2. Process
            with autocast(device.type):
                image = self.pipe.text2img(
                    prompt=prompt,
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    height=height,
                    width=width,
                    negative_prompt=forced_negative,
                    generator=generator,
                    max_embeddings_multiples=5,
                ).images[0]

            # encode image as base 64
            buffered = BytesIO()
            image.save(buffered, format="JPEG")
            img_str = base64.b64encode(buffered.getvalue())

            # Return the success response
            return {"flag": "success", "image": img_str.decode()}

        except Exception as e:
            # Handle any other exceptions and return an error response
            return {"flag": "error", "message": str(e)}