|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
Finetuned Llama3-8B-Instruct model on https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** [Isaac Chung](https://huggingface.co/isaacchung) |
|
<!-- - **Funded by [optional]:** [More Information Needed] --> |
|
<!-- - **Shared by [optional]:** [More Information Needed] --> |
|
<!-- - **Model type:** [More Information Needed] --> |
|
- **Language(s) (NLP):** [English] |
|
- **License:** [Apache 2.0] |
|
- **Finetuned from model [optional]:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
|
|
<!-- ### Model Sources [optional] --> |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
<!-- - **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] --> |
|
|
|
<!-- ## Uses --> |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
<!-- ### Direct Use --> |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ### Downstream Use [optional] --> |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ### Out-of-Scope Use --> |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ## Bias, Risks, and Limitations --> |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ### Recommendations --> |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
<!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. --> |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
```python |
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft") |
|
model = AutoModelForCausalLM.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft") |
|
``` |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
<!-- #### Preprocessing [optional] --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
<!-- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
Model loaded: |
|
```python |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=bnb_config |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.padding_side = 'right' # to prevent warnings |
|
``` |
|
|
|
|
|
Training params: |
|
```python |
|
# LoRA config based on QLoRA paper & Sebastian Raschka experiment |
|
peft_config = LoraConfig( |
|
lora_alpha=128, |
|
lora_dropout=0.05, |
|
r=256, |
|
bias="none", |
|
target_modules="all-linear", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
args = TrainingArguments( |
|
num_train_epochs=3, # number of training epochs |
|
per_device_train_batch_size=3, # batch size per device during training |
|
gradient_accumulation_steps=2, # number of steps before performing a backward/update pass |
|
gradient_checkpointing=True, # use gradient checkpointing to save memory |
|
optim="adamw_torch_fused", # use fused adamw optimizer |
|
logging_steps=10, # log every 10 steps |
|
save_strategy="epoch", # save checkpoint every epoch |
|
learning_rate=2e-4, # learning rate, based on QLoRA paper |
|
bf16=True, # use bfloat16 precision |
|
tf32=True, # use tf32 precision |
|
max_grad_norm=0.3, # max gradient norm based on QLoRA paper |
|
warmup_ratio=0.03, # warmup ratio based on QLoRA paper |
|
lr_scheduler_type="constant", # use constant learning rate scheduler |
|
) |
|
|
|
max_seq_length = 3072 # max sequence length for model and packing of the dataset |
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
args=args, |
|
train_dataset=dataset, |
|
peft_config=peft_config, |
|
max_seq_length=max_seq_length, |
|
tokenizer=tokenizer, |
|
packing=True, |
|
dataset_kwargs={ |
|
"add_special_tokens": False, # We template with special tokens |
|
"append_concat_token": False, # No need to add additional separator token |
|
} |
|
) |
|
``` |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
- train_runtime: 1148.4436 |
|
- train_samples_per_second: 0.392 |
|
- train_steps_per_second: 0.065 |
|
- train_loss: 0.5639963404337565 |
|
- epoch: 3.0 |
|
|
|
#### Training Loss |
|
|
|
``` |
|
{'loss': 1.0092, 'grad_norm': 0.27965569496154785, 'learning_rate': 0.0002, 'epoch': 0.4} |
|
{'loss': 0.695, 'grad_norm': 0.17789314687252045, 'learning_rate': 0.0002, 'epoch': 0.8} |
|
{'loss': 0.6747, 'grad_norm': 0.13655725121498108, 'learning_rate': 0.0002, 'epoch': 1.2} |
|
{'loss': 0.508, 'grad_norm': 0.14653471112251282, 'learning_rate': 0.0002, 'epoch': 1.6} |
|
{'loss': 0.4961, 'grad_norm': 0.14873674511909485, 'learning_rate': 0.0002, 'epoch': 2.0} |
|
{'loss': 0.3509, 'grad_norm': 0.1657964587211609, 'learning_rate': 0.0002, 'epoch': 2.4} |
|
{'loss': 0.3321, 'grad_norm': 0.1634644716978073, 'learning_rate': 0.0002, 'epoch': 2.8} |
|
``` |
|
|
|
<!-- ## Evaluation --> |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
<!-- ### Testing Data, Factors & Metrics --> |
|
|
|
<!-- #### Testing Data --> |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- #### Factors --> |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- #### Metrics --> |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ### Results --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- #### Summary --> |
|
|
|
|
|
|
|
<!-- ## Model Examination [optional] --> |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ## Environmental Impact --> |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] --> |
|
|
|
## Technical Specifications [optional] |
|
|
|
<!-- ### Model Architecture and Objective --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
### Compute Infrastructure |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
#### Hardware |
|
|
|
- 1x NVIDIA RTX 6000 Ada |
|
|
|
<!-- #### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
<!-- **BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] --> |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
<!-- [More Information Needed] --> |
|
|
|
<!-- ## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] --> |
|
|
|
## Model Card Contact |
|
|
|
[Isaac Chung](https://huggingface.co/isaacchung) |