metadata
base_model:
- meta-llama/Llama-3.1-8B-Instruct
license: llama3.1
language:
- gl
metrics:
- bleu
- rouge
model-index:
- name: Llama-3.1-8B-Instruct-Galician
results:
- task:
type: text-generation
dataset:
name: alpaca_data_galician
type: alpaca_data_galician
metrics:
- name: bleu
type: bleu-4
value: 23.13
- name: rouge
type: rouge-l
value: 21.84
pipeline_tag: text-generation
library_name: transformers
widget:
- text: Onde está o concello de Frades?
output:
text: >-
Frades é un concello da provincia da Coruña, pertencente á comarca de
Ordes. Está situado a 15 quilómetros de Santiago de Compostela.
Llama-3.1-8B-Instruct-Galician a.k.a. Cabuxa 2.0
This model is a continued pretraining version of meta-llama/Llama-3.1-8B-Instruct on the CorpusNós dataset.
Model Description
- Developed by: UDC Information Retrieval Lab (IRLab)
- Language(s) (NLP): Multilingual, adapted to Galician
- License: llama3.1
- Finetuned from model: meta-llama/Llama-3.1-8B-Instruct
- Repository: Adapting Large Language Models for Underrepresented Languages
- Paper: Coming soon
How to Get Started with the Model
import transformers
import torch
model_id = "irlab-udc/Llama-3.1-8B-Instruct-Galician"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a conversational AI that always responds in Galician."},
{"role": "user", "content": "Cal é a principal vantaxe de usar Scrum?"},
]
outputs = pipeline(messages, max_new_tokens=512)
print(outputs[0]["generated_text"][-1]["content"])
Training Hyperparameters
Parameter | Value |
---|---|
learning_rate | 0.0001 |
train_batch_size | 32 |
eval_batch_size | 1 |
seed | 42 |
distributed_type | multi-GPU |
num_devices | 4 |
gradient_accumulation_steps | 2 |
total_train_batch_size | 256 |
total_eval_batch_size | 4 |
optimizer | Adam with betas=(0.9, 0.999), epsilon=1e-08 |
lr_scheduler_type | cosine |
lr_scheduler_warmup_ratio | 0.1 |
num_epochs | 1.0 |
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0606 | 0.1682 | 900 | 2.0613 |
1.9898 | 0.3363 | 1800 | 1.9929 |
1.9847 | 0.5045 | 2700 | 1.9613 |
1.9577 | 0.6726 | 3600 | 1.9445 |
1.9287 | 0.8408 | 4500 | 1.9368 |
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: 4x NVIDIA A100 SXM4 80 GB (TDP of 400W)
- Hours used: 60
- Cloud Provider: Private infrastructure
- Carbon Emitted: 10.37 Kg. CO₂ eq.
Citation
@inproceedings{bao-perez-parapar-xovetic-2024,
title={Adapting Large Language Models for Underrepresented Languages},
author={Eliseo Bao and Anxo Pérez and Javier Parapar },
booktitle={VII Congreso XoveTIC: impulsando el talento cient{\'\i}fico},
year={2024},
organization={Universidade da Coru{\~n}a, Servizo de Publicaci{\'o}ns}
abstact = {The popularization of Large Language Models (LLMs), especially with the development of conversational systems, makes mandatory to think about facilitating the use of artificial intelligence (AI) to everyone. Most models neglect minority languages, prioritizing widely spoken ones. This exacerbates their underrepresentation in the digital world and negatively affects their speakers. We present two resources aimed at improving natural language processing (NLP) for Galician: (i) a Llama 3.1 instruct model adapted through continuous pre-training on the CorpusNos dataset; and (ii) a Galician version of the Alpaca dataset, used to assess the improvement over the base model. In this evaluation, our model outperformed both the base model and another Galician model in quantitative and qualitative terms}
}