File size: 6,607 Bytes
8e1010d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
from llava_phi import LlavaPhiForCausalLM, PhiConfig

import torch
import torch.nn as nn

import re
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
from typing import Optional, List

class PhiCompressor(nn.Module):
    def __init__(self, compressor):
        super().__init__()

        self.model_path = compressor
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
        self.compressor = LlavaPhiForCausalLM.from_pretrained(self.model_path)
        self.select_layer = 15

    def forward_video_encoding(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        qs_ids: Optional[torch.LongTensor]= None,
        qs_mask: Optional[torch.Tensor] = None,
        time_labels: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        projector: Optional[torch.LongTensor] = None,
        select_layer: Optional[int] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:

        full_memory, full_time = self.compressor.forward_video_encoding(
            input_ids,
            attention_mask,
            qs_ids,
            qs_mask,
            time_labels,
            position_ids,
            past_key_values,
            inputs_embeds,
            labels,
            use_cache,
            output_attentions,
            output_hidden_states,
            images,
            projector,
            select_layer,
            return_dict
        )
        return full_memory, full_time

    def forward_question(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        qs_ids: Optional[torch.LongTensor]= None,
        qs_mask: Optional[torch.Tensor] = None,
        time_labels: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        memory: Optional[torch.FloatTensor] = None,
        projector: Optional[torch.LongTensor] = None,
        select_layer: Optional[int] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:

        qs_token = self.compressor.forward_question(
            input_ids,
            attention_mask,
            qs_ids,
            qs_mask,
            time_labels,
            position_ids,
            past_key_values,
            inputs_embeds,
            labels,
            use_cache,
            output_attentions,
            output_hidden_states,
            memory,
            projector,
            select_layer,
            return_dict
        )
        return qs_token

    def forward_compress(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        qs_ids: Optional[torch.LongTensor]= None,
        qs_mask: Optional[torch.Tensor] = None,
        time_labels: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        projector: Optional[torch.LongTensor] = None,
        select_layer: Optional[int] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:

        compress_tokens, loss, similarity = self.compressor.forward_token(
            input_ids,
            attention_mask,
            qs_ids,
            qs_mask,
            time_labels,
            position_ids,
            past_key_values,
            inputs_embeds,
            labels,
            use_cache,
            output_attentions,
            output_hidden_states,
            images,
            projector,
            select_layer,
            return_dict
        )
        return compress_tokens, loss, similarity
    
    def forward(self, clips, seqs, compress_mask, qs, qs_mask, time_labels):
        return self.forward_compress(input_ids=seqs, attention_mask=compress_mask, qs_ids=qs, qs_mask=qs_mask, images=clips, select_layer=self.select_layer, time_labels=time_labels)


    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.compressor.dtype

    @property
    def device(self):
        return self.compressor.device

    @property
    def config(self):
        return self.compressor.config

    @property
    def hidden_size(self):
        return self.config.hidden_size


def build_compressor(compressor_cfg):
    compressor = getattr(compressor_cfg, 'mm_compressor', getattr(compressor_cfg, 'compressor', None))
    is_absolute_path_exists = os.path.exists(compressor)
    if is_absolute_path_exists:
        return PhiCompressor(compressor)
    
    raise ValueError(f'Unknown compressor: {compressor}')


def build_compress_projector(config):
    projector_type = getattr(config, 'compress_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.compress_hidden_size, config.hidden_size)

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.compress_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == 'identity':
        return IdentityMap()
    
    raise ValueError(f'Unknown projector type: {projector_type}')