anton-l's picture
anton-l HF staff
Upload README.md
26c7dcf
metadata
language:
  - rm-vallader
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - generated_from_trainer
  - rm-vallader
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_7_0
model-index:
  - name: XLS-R-300M - Romansh Vallader
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: rm-vallader
        metrics:
          - name: Test WER
            type: wer
            value: 31.689
          - name: Test CER
            type: cer
            value: 7.202

wav2vec2-large-xls-r-300m-romansh-vallader

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3155
  • Wer: 0.3162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9556 15.62 500 2.9300 1.0
1.7874 31.25 1000 0.7566 0.6509
1.0131 46.88 1500 0.3671 0.3828
0.8439 62.5 2000 0.3350 0.3416
0.7502 78.12 2500 0.3155 0.3296
0.7093 93.75 3000 0.3182 0.3186

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0