--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - rm-vallader - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romansh Vallader results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: rm-vallader metrics: - name: Test WER type: wer value: 31.689 - name: Test CER type: cer value: 7.202 --- # wav2vec2-large-xls-r-300m-romansh-vallader This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set: - Loss: 0.3155 - Wer: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9556 | 15.62 | 500 | 2.9300 | 1.0 | | 1.7874 | 31.25 | 1000 | 0.7566 | 0.6509 | | 1.0131 | 46.88 | 1500 | 0.3671 | 0.3828 | | 0.8439 | 62.5 | 2000 | 0.3350 | 0.3416 | | 0.7502 | 78.12 | 2500 | 0.3155 | 0.3296 | | 0.7093 | 93.75 | 3000 | 0.3182 | 0.3186 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0