File size: 40,488 Bytes
6162316 be3aa67 6162316 be3aa67 8436ce9 f11c871 8436ce9 be3aa67 8436ce9 be3aa67 8436ce9 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 be3aa67 f11c871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
model-index:
- name: stella-large-zh-v2
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 47.34436411023816
- type: cos_sim_spearman
value: 49.947084806624545
- type: euclidean_pearson
value: 48.128834319004824
- type: euclidean_spearman
value: 49.947064694876815
- type: manhattan_pearson
value: 48.083561270166484
- type: manhattan_spearman
value: 49.90207128584442
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 50.97998570817664
- type: cos_sim_spearman
value: 53.11852606980578
- type: euclidean_pearson
value: 55.12610520736481
- type: euclidean_spearman
value: 53.11852832108405
- type: manhattan_pearson
value: 55.10299116717361
- type: manhattan_spearman
value: 53.11304196536268
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.81799999999999
- type: f1
value: 39.022194031906444
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 62.83544115057508
- type: cos_sim_spearman
value: 65.53509404838948
- type: euclidean_pearson
value: 64.08198144850084
- type: euclidean_spearman
value: 65.53509404760305
- type: manhattan_pearson
value: 64.08808420747272
- type: manhattan_spearman
value: 65.54907862648346
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 39.95428546140963
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 38.18454393512963
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 85.4453602559479
- type: mrr
value: 88.1418253968254
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 85.82731720256984
- type: mrr
value: 88.53230158730159
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 24.459
- type: map_at_10
value: 36.274
- type: map_at_100
value: 38.168
- type: map_at_1000
value: 38.292
- type: map_at_3
value: 32.356
- type: map_at_5
value: 34.499
- type: mrr_at_1
value: 37.584
- type: mrr_at_10
value: 45.323
- type: mrr_at_100
value: 46.361999999999995
- type: mrr_at_1000
value: 46.412
- type: mrr_at_3
value: 42.919000000000004
- type: mrr_at_5
value: 44.283
- type: ndcg_at_1
value: 37.584
- type: ndcg_at_10
value: 42.63
- type: ndcg_at_100
value: 50.114000000000004
- type: ndcg_at_1000
value: 52.312000000000005
- type: ndcg_at_3
value: 37.808
- type: ndcg_at_5
value: 39.711999999999996
- type: precision_at_1
value: 37.584
- type: precision_at_10
value: 9.51
- type: precision_at_100
value: 1.554
- type: precision_at_1000
value: 0.183
- type: precision_at_3
value: 21.505
- type: precision_at_5
value: 15.514
- type: recall_at_1
value: 24.459
- type: recall_at_10
value: 52.32
- type: recall_at_100
value: 83.423
- type: recall_at_1000
value: 98.247
- type: recall_at_3
value: 37.553
- type: recall_at_5
value: 43.712
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 77.7269993986771
- type: cos_sim_ap
value: 86.8488070512359
- type: cos_sim_f1
value: 79.32095490716179
- type: cos_sim_precision
value: 72.6107226107226
- type: cos_sim_recall
value: 87.39770867430443
- type: dot_accuracy
value: 77.7269993986771
- type: dot_ap
value: 86.84218333157476
- type: dot_f1
value: 79.32095490716179
- type: dot_precision
value: 72.6107226107226
- type: dot_recall
value: 87.39770867430443
- type: euclidean_accuracy
value: 77.7269993986771
- type: euclidean_ap
value: 86.84880910178296
- type: euclidean_f1
value: 79.32095490716179
- type: euclidean_precision
value: 72.6107226107226
- type: euclidean_recall
value: 87.39770867430443
- type: manhattan_accuracy
value: 77.82321106434155
- type: manhattan_ap
value: 86.8152244713786
- type: manhattan_f1
value: 79.43262411347519
- type: manhattan_precision
value: 72.5725338491296
- type: manhattan_recall
value: 87.72504091653029
- type: max_accuracy
value: 77.82321106434155
- type: max_ap
value: 86.84880910178296
- type: max_f1
value: 79.43262411347519
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 68.862
- type: map_at_10
value: 77.106
- type: map_at_100
value: 77.455
- type: map_at_1000
value: 77.459
- type: map_at_3
value: 75.457
- type: map_at_5
value: 76.254
- type: mrr_at_1
value: 69.125
- type: mrr_at_10
value: 77.13799999999999
- type: mrr_at_100
value: 77.488
- type: mrr_at_1000
value: 77.492
- type: mrr_at_3
value: 75.606
- type: mrr_at_5
value: 76.29599999999999
- type: ndcg_at_1
value: 69.02000000000001
- type: ndcg_at_10
value: 80.81099999999999
- type: ndcg_at_100
value: 82.298
- type: ndcg_at_1000
value: 82.403
- type: ndcg_at_3
value: 77.472
- type: ndcg_at_5
value: 78.892
- type: precision_at_1
value: 69.02000000000001
- type: precision_at_10
value: 9.336
- type: precision_at_100
value: 0.9990000000000001
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 27.924
- type: precision_at_5
value: 17.492
- type: recall_at_1
value: 68.862
- type: recall_at_10
value: 92.308
- type: recall_at_100
value: 98.84100000000001
- type: recall_at_1000
value: 99.684
- type: recall_at_3
value: 83.193
- type: recall_at_5
value: 86.617
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.063999999999997
- type: map_at_10
value: 78.02
- type: map_at_100
value: 81.022
- type: map_at_1000
value: 81.06
- type: map_at_3
value: 53.613
- type: map_at_5
value: 68.008
- type: mrr_at_1
value: 87.8
- type: mrr_at_10
value: 91.827
- type: mrr_at_100
value: 91.913
- type: mrr_at_1000
value: 91.915
- type: mrr_at_3
value: 91.508
- type: mrr_at_5
value: 91.758
- type: ndcg_at_1
value: 87.8
- type: ndcg_at_10
value: 85.753
- type: ndcg_at_100
value: 88.82900000000001
- type: ndcg_at_1000
value: 89.208
- type: ndcg_at_3
value: 84.191
- type: ndcg_at_5
value: 83.433
- type: precision_at_1
value: 87.8
- type: precision_at_10
value: 41.33
- type: precision_at_100
value: 4.8
- type: precision_at_1000
value: 0.48900000000000005
- type: precision_at_3
value: 75.767
- type: precision_at_5
value: 64.25999999999999
- type: recall_at_1
value: 25.063999999999997
- type: recall_at_10
value: 87.357
- type: recall_at_100
value: 97.261
- type: recall_at_1000
value: 99.309
- type: recall_at_3
value: 56.259
- type: recall_at_5
value: 73.505
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 46.800000000000004
- type: map_at_10
value: 56.898
- type: map_at_100
value: 57.567
- type: map_at_1000
value: 57.593
- type: map_at_3
value: 54.167
- type: map_at_5
value: 55.822
- type: mrr_at_1
value: 46.800000000000004
- type: mrr_at_10
value: 56.898
- type: mrr_at_100
value: 57.567
- type: mrr_at_1000
value: 57.593
- type: mrr_at_3
value: 54.167
- type: mrr_at_5
value: 55.822
- type: ndcg_at_1
value: 46.800000000000004
- type: ndcg_at_10
value: 62.07
- type: ndcg_at_100
value: 65.049
- type: ndcg_at_1000
value: 65.666
- type: ndcg_at_3
value: 56.54
- type: ndcg_at_5
value: 59.492999999999995
- type: precision_at_1
value: 46.800000000000004
- type: precision_at_10
value: 7.84
- type: precision_at_100
value: 0.9169999999999999
- type: precision_at_1000
value: 0.096
- type: precision_at_3
value: 21.133
- type: precision_at_5
value: 14.099999999999998
- type: recall_at_1
value: 46.800000000000004
- type: recall_at_10
value: 78.4
- type: recall_at_100
value: 91.7
- type: recall_at_1000
value: 96.39999999999999
- type: recall_at_3
value: 63.4
- type: recall_at_5
value: 70.5
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 47.98768757214313
- type: f1
value: 35.23884426992269
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 86.97936210131333
- type: ap
value: 56.292679530375736
- type: f1
value: 81.87001614762136
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 71.17149643620844
- type: cos_sim_spearman
value: 77.48040046337948
- type: euclidean_pearson
value: 76.32337539923347
- type: euclidean_spearman
value: 77.4804004621894
- type: manhattan_pearson
value: 76.33275226275444
- type: manhattan_spearman
value: 77.48979843086128
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 27.966807589556826
- type: mrr
value: 26.92023809523809
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 66.15100000000001
- type: map_at_10
value: 75.048
- type: map_at_100
value: 75.374
- type: map_at_1000
value: 75.386
- type: map_at_3
value: 73.26700000000001
- type: map_at_5
value: 74.39
- type: mrr_at_1
value: 68.381
- type: mrr_at_10
value: 75.644
- type: mrr_at_100
value: 75.929
- type: mrr_at_1000
value: 75.93900000000001
- type: mrr_at_3
value: 74.1
- type: mrr_at_5
value: 75.053
- type: ndcg_at_1
value: 68.381
- type: ndcg_at_10
value: 78.669
- type: ndcg_at_100
value: 80.161
- type: ndcg_at_1000
value: 80.46799999999999
- type: ndcg_at_3
value: 75.3
- type: ndcg_at_5
value: 77.172
- type: precision_at_1
value: 68.381
- type: precision_at_10
value: 9.48
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 28.299999999999997
- type: precision_at_5
value: 17.98
- type: recall_at_1
value: 66.15100000000001
- type: recall_at_10
value: 89.238
- type: recall_at_100
value: 96.032
- type: recall_at_1000
value: 98.437
- type: recall_at_3
value: 80.318
- type: recall_at_5
value: 84.761
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.26160053799597
- type: f1
value: 65.96949453305112
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.12037659717554
- type: f1
value: 72.69052407105445
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 50.1
- type: map_at_10
value: 56.489999999999995
- type: map_at_100
value: 57.007
- type: map_at_1000
value: 57.06400000000001
- type: map_at_3
value: 55.25
- type: map_at_5
value: 55.93
- type: mrr_at_1
value: 50.3
- type: mrr_at_10
value: 56.591
- type: mrr_at_100
value: 57.108000000000004
- type: mrr_at_1000
value: 57.165
- type: mrr_at_3
value: 55.35
- type: mrr_at_5
value: 56.03
- type: ndcg_at_1
value: 50.1
- type: ndcg_at_10
value: 59.419999999999995
- type: ndcg_at_100
value: 62.28900000000001
- type: ndcg_at_1000
value: 63.9
- type: ndcg_at_3
value: 56.813
- type: ndcg_at_5
value: 58.044
- type: precision_at_1
value: 50.1
- type: precision_at_10
value: 6.859999999999999
- type: precision_at_100
value: 0.828
- type: precision_at_1000
value: 0.096
- type: precision_at_3
value: 20.433
- type: precision_at_5
value: 12.86
- type: recall_at_1
value: 50.1
- type: recall_at_10
value: 68.60000000000001
- type: recall_at_100
value: 82.8
- type: recall_at_1000
value: 95.7
- type: recall_at_3
value: 61.3
- type: recall_at_5
value: 64.3
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 73.41000000000001
- type: f1
value: 72.87768282499509
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 73.4163508391987
- type: cos_sim_ap
value: 78.51058998215277
- type: cos_sim_f1
value: 75.3875968992248
- type: cos_sim_precision
value: 69.65085049239033
- type: cos_sim_recall
value: 82.15417106652588
- type: dot_accuracy
value: 73.4163508391987
- type: dot_ap
value: 78.51058998215277
- type: dot_f1
value: 75.3875968992248
- type: dot_precision
value: 69.65085049239033
- type: dot_recall
value: 82.15417106652588
- type: euclidean_accuracy
value: 73.4163508391987
- type: euclidean_ap
value: 78.51058998215277
- type: euclidean_f1
value: 75.3875968992248
- type: euclidean_precision
value: 69.65085049239033
- type: euclidean_recall
value: 82.15417106652588
- type: manhattan_accuracy
value: 73.03735787763942
- type: manhattan_ap
value: 78.4190891700083
- type: manhattan_f1
value: 75.32592950265573
- type: manhattan_precision
value: 69.3950177935943
- type: manhattan_recall
value: 82.36536430834214
- type: max_accuracy
value: 73.4163508391987
- type: max_ap
value: 78.51058998215277
- type: max_f1
value: 75.3875968992248
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 91.81000000000002
- type: ap
value: 89.35809579688139
- type: f1
value: 91.79220350456818
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 30.10755999973859
- type: cos_sim_spearman
value: 36.221732138848864
- type: euclidean_pearson
value: 36.41120179336658
- type: euclidean_spearman
value: 36.221731188009436
- type: manhattan_pearson
value: 36.34865300346968
- type: manhattan_spearman
value: 36.17696483080459
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 36.778975708100226
- type: cos_sim_spearman
value: 38.733929926753724
- type: euclidean_pearson
value: 37.13383498228113
- type: euclidean_spearman
value: 38.73374886550868
- type: manhattan_pearson
value: 37.175732896552404
- type: manhattan_spearman
value: 38.74120541657908
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 65.97095922825076
- type: cos_sim_spearman
value: 68.87452938308421
- type: euclidean_pearson
value: 67.23101642424429
- type: euclidean_spearman
value: 68.87452938308421
- type: manhattan_pearson
value: 67.29909334410189
- type: manhattan_spearman
value: 68.89807985930508
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 78.98860630733722
- type: cos_sim_spearman
value: 79.36601601355665
- type: euclidean_pearson
value: 78.77295944956447
- type: euclidean_spearman
value: 79.36585127278974
- type: manhattan_pearson
value: 78.82060736131619
- type: manhattan_spearman
value: 79.4395526421926
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 66.40501824507894
- type: mrr
value: 76.18463933756757
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 27.095000000000002
- type: map_at_10
value: 76.228
- type: map_at_100
value: 79.865
- type: map_at_1000
value: 79.935
- type: map_at_3
value: 53.491
- type: map_at_5
value: 65.815
- type: mrr_at_1
value: 89.554
- type: mrr_at_10
value: 92.037
- type: mrr_at_100
value: 92.133
- type: mrr_at_1000
value: 92.137
- type: mrr_at_3
value: 91.605
- type: mrr_at_5
value: 91.88
- type: ndcg_at_1
value: 89.554
- type: ndcg_at_10
value: 83.866
- type: ndcg_at_100
value: 87.566
- type: ndcg_at_1000
value: 88.249
- type: ndcg_at_3
value: 85.396
- type: ndcg_at_5
value: 83.919
- type: precision_at_1
value: 89.554
- type: precision_at_10
value: 41.792
- type: precision_at_100
value: 4.997
- type: precision_at_1000
value: 0.515
- type: precision_at_3
value: 74.795
- type: precision_at_5
value: 62.675000000000004
- type: recall_at_1
value: 27.095000000000002
- type: recall_at_10
value: 82.694
- type: recall_at_100
value: 94.808
- type: recall_at_1000
value: 98.30600000000001
- type: recall_at_3
value: 55.156000000000006
- type: recall_at_5
value: 69.19
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 51.929
- type: f1
value: 50.16876489927282
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 61.404157724658894
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 57.11418384351802
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 52.1
- type: map_at_10
value: 62.956999999999994
- type: map_at_100
value: 63.502
- type: map_at_1000
value: 63.51599999999999
- type: map_at_3
value: 60.75000000000001
- type: map_at_5
value: 62.195
- type: mrr_at_1
value: 52.0
- type: mrr_at_10
value: 62.907000000000004
- type: mrr_at_100
value: 63.452
- type: mrr_at_1000
value: 63.466
- type: mrr_at_3
value: 60.699999999999996
- type: mrr_at_5
value: 62.144999999999996
- type: ndcg_at_1
value: 52.1
- type: ndcg_at_10
value: 67.93299999999999
- type: ndcg_at_100
value: 70.541
- type: ndcg_at_1000
value: 70.91300000000001
- type: ndcg_at_3
value: 63.468
- type: ndcg_at_5
value: 66.08800000000001
- type: precision_at_1
value: 52.1
- type: precision_at_10
value: 8.34
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 23.767
- type: precision_at_5
value: 15.540000000000001
- type: recall_at_1
value: 52.1
- type: recall_at_10
value: 83.39999999999999
- type: recall_at_100
value: 95.5
- type: recall_at_1000
value: 98.4
- type: recall_at_3
value: 71.3
- type: recall_at_5
value: 77.7
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 87.12
- type: ap
value: 70.85284793227382
- type: f1
value: 85.55420883566512
---
**新闻 | News**
**[2024-04-30]** stella-v4系列预计四月份发布,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语**。
**[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度**。
**[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。
**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**。
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见!
## stella model
stella是一个通用的文本编码模型,主要有以下模型:
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
完整的训练思路和训练过程已记录在[博客1](https://zhuanlan.zhihu.com/p/655322183)和[博客2](https://zhuanlan.zhihu.com/p/662209559),欢迎阅读讨论。
**训练数据:**
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
**训练方法:**
1. 对比学习损失函数
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
3. EWC(Elastic Weights Consolidation)[4]
4. cosent loss[5]
5. 每一种类型的数据一个迭代器,分别计算loss进行更新
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
比如piccolo的`查询:`, `结果:`, e5的`query:`和`passage:`)。
**初始权重:**\
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
embedding使用层次分解位置编码[7]进行初始化。\
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。
stella is a general-purpose text encoder, which mainly includes the following models:
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
The training data mainly includes:
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
than 512.
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
The loss functions mainly include:
1. Contrastive learning loss function
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
3. EWC (Elastic Weights Consolidation)
4. cosent loss
Model weight initialization:\
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
Training strategy:\
One iterator for each type of data, separately calculating the loss.
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.
## Metric
#### C-MTEB leaderboard (Chinese)
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 |
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
#### MTEB leaderboard (English)
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Classification (12) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) |
|:-----------------:|:---------------:|:---------:|:---------------:|:------------:|:-------------------:|:---------------:|:-----------------------:|:-------------:|:--------------:|:--------:|:------------------:|
| stella-base-en-v2 | 0.2 | 768 | 512 | 62.61 | 75.28 | 44.9 | 86.45 | 58.77 | 50.1 | 83.02 | 32.52 |
#### Reproduce our results
**C-MTEB:**
```python
import torch
import numpy as np
from typing import List
from mteb import MTEB
from sentence_transformers import SentenceTransformer
class FastTextEncoder():
def __init__(self, model_name):
self.model = SentenceTransformer(model_name).cuda().half().eval()
self.model.max_seq_length = 512
def encode(
self,
input_texts: List[str],
*args,
**kwargs
):
new_sens = list(set(input_texts))
new_sens.sort(key=lambda x: len(x), reverse=True)
vecs = self.model.encode(
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
).astype(np.float32)
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
torch.cuda.empty_cache()
return vecs
if __name__ == '__main__':
model_name = "infgrad/stella-base-zh-v2"
output_folder = "zh_mteb_results/stella-base-zh-v2"
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
model = FastTextEncoder(model_name)
for task in task_names:
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)
```
**MTEB:**
You can use official script to reproduce our result. [scripts/run_mteb_english.py](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py)
#### Evaluation for long text
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
更致命的是那些长度大于512的文本,其重点都在前半部分
这里以CMRC2018的数据为例说明这个问题:
```
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
```
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
简言之,现有数据集的2个问题:\
1)长度大于512的过少\
2)即便大于512,对于检索而言也只需要前512的文本内容\
导致**无法准确评估模型的长文本编码能力。**
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
- CMRC2018,通用百科
- CAIL,法律阅读理解
- DRCD,繁体百科,已转简体
- Military,军工问答
- Squad,英文阅读理解,已转中文
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
评测指标为Recall@5, 结果如下:
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** |
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
## Usage
#### stella 中文系列模型
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
,即在检索重排任务上给query和passage加上`查询: `和`结果: `。对于短短匹配不需要做任何操作。
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。
stella中文系列模型均使用mean pooling做为文本向量。
在sentence-transformer库中的使用方法:
```python
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('infgrad/stella-base-zh-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
直接使用transformers库:
```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
sentences = ["数据1", "数据ABCDEFGH"]
batch_data = tokenizer(
batch_text_or_text_pairs=sentences,
padding="longest",
return_tensors="pt",
max_length=1024,
truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape) # 2,768
```
#### stella models for English
**Using Sentence-Transformers:**
```python
from sentence_transformers import SentenceTransformer
sentences = ["one car come", "one car go"]
model = SentenceTransformer('infgrad/stella-base-en-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
**Using HuggingFace Transformers:**
```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
model = AutoModel.from_pretrained('infgrad/stella-base-en-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-en-v2')
sentences = ["one car come", "one car go"]
batch_data = tokenizer(
batch_text_or_text_pairs=sentences,
padding="longest",
return_tensors="pt",
max_length=512,
truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape) # 2,768
```
## Training Detail
**硬件:** 单卡A100-80GB
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
**学习率:** 1e-6
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。
## ToDoList
**评测的稳定性:**
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
它们的效果均比不上BM25。
## Reference
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
2. https://github.com/wangyuxinwhy/uniem
3. https://github.com/CLUEbenchmark/SimCLUE
4. https://arxiv.org/abs/1612.00796
5. https://kexue.fm/archives/8847
6. https://huggingface.co/sensenova/piccolo-base-zh
7. https://kexue.fm/archives/7947
8. https://github.com/FlagOpen/FlagEmbedding
9. https://github.com/THUDM/LongBench
|