gmonsoon's picture
Upload folder using huggingface_hub
6ef781f verified
|
raw
history blame
4.6 kB
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - TinyLlama/TinyLlama-1.1B-Chat-v1.0
  - vihangd/DopeyTinyLlama-1.1B-v1
  - cognitivecomputations/TinyDolphin-2.8.1-1.1b
  - Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
base_model:
  - TinyLlama/TinyLlama-1.1B-Chat-v1.0
  - vihangd/DopeyTinyLlama-1.1B-v1
  - cognitivecomputations/TinyDolphin-2.8.1-1.1b
  - Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test

UltraCompute-7B-Base

UltraCompute-7B-Base is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
gate_mode: hidden
dtype: float16
experts:
  - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
    positive_prompts:
    - "Help me debug this code."
    - "Rewrite this function in Python."
    - "Optimize this C# script."
    - "Implement this feature using JavaScript."
    - "Convert this HTML structure into a more efficient design."
    - "Assist me with writing a program that"
  - source_model: vihangd/DopeyTinyLlama-1.1B-v1
    positive_prompts:
    - "How do you"
    - "Explain the concept of"
    - "Give an overview of"
    - "Compare and contrast between"
    - "Provide information about"
    - "Help me understand"
    - "Summarize"
    - "Make a recommendation on"
    - "Answer this question"
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts:
    - "Write a program to solve this problem"
    - "Modify this function to improve its performance"
    - "Refactor this code to enhance readability"
    - "Create a custom function for this specific use case"
    - "Optimize this algorithm to reduce computational complexity"
    - "Implement this feature by extending existing codebase"
    - "Integrate this API call into the application"
    - "Help me troubleshoot and fix this bug"
    - "Review and test this code snippet before deployment"
    - "Analyze this error log to identify potential issues"
    - "Generate a set of unit tests for this module"
    - "Evaluate different approaches to solving this problem"
    - "Do a web search for"
    - "Use the plugin to"
  - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
    positive_prompts:
    - "add these numbers"
    - "whats 2+2"
    - "subtraction"
    - "division"
    - "multiplication"
    - "addition"
    - "I need help with a math problem"
    - "Solve for x"
    - "Add these two numbers together: 4 + 3 = 7"
    - "Multiply 5 by 6: 5 * 6 = 30"
    - "Divide 8 by 2: 8 / 2 = 4"
    - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
    - "Calculate the square root of 16: sqrt(16) = 4"
    - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
    - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
    - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
    - "Graph the line y = 2x + 3"
    - "Approximate pi to three decimal places: 3.142"
    - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
    - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
    - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
    - "Solve the system of equations Ax = b: x = [-5, 10]"
    - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gmonsoon/UltraCompute-7B-Base"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])