File size: 1,705 Bytes
6f26459
998e451
6f26459
 
a473699
 
6f26459
 
 
a473699
 
 
 
af47443
 
 
6f26459
 
 
 
 
 
 
a473699
6f26459
 
 
a473699
6f26459
 
 
 
 
 
 
 
 
 
 
 
 
 
8876b51
 
ae8157c
6f26459
8876b51
 
6f26459
 
a473699
8876b51
 
 
 
6f26459
 
 
8876b51
 
6f26459
a473699
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: /notebooks/cantonese/bert-base-cantonese
tags:
- generated_from_trainer
- Cantonese
- bert
model-index:
- name: bert-base-cantonese
  results: []
license: cc-by-4.0
language:
- yue
pipeline_tag: fill-mask
widget:
- text: "香港原本[MASK]一個人煙稀少嘅漁港。"
  example_title: "係"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-cantonese

This model is a continue pre-train version of [indiejoseph/cantonese/bert-base-cantonese](https://huggingface.co//notebooks/cantonese/bert-base-cantonese) on [indiejoseph/wikipedia-zh-yue-filtered](https://huggingface.co/datasets/indiejoseph/wikipedia-zh-yue-filtered).

## Model description

This model has extended 500 more Chinese characters which very common in Cantonese, such as `冧`, `噉`, `麪`, `笪`, `冚`, `乸` etc, and continue pre-trained with [indiejoseph/wikipedia-zh-yue-filtered](https://huggingface.co/datasets/indiejoseph/wikipedia-zh-yue-filtered)

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results



### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0