imrazaa's picture
dataset name added
9e4bdb4
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: named-entity-recognition-distilbert-A
    results: []

named-entity-recognition-distilbert-A

This model is a fine-tuned version of distilbert-base-uncased on the Multinerd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0606
  • Precision: 0.8940
  • Recall: 0.9027
  • F1: 0.8983
  • Accuracy: 0.9833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.032 1.0 8205 0.0496 0.8843 0.8928 0.8885 0.9825
0.019 2.0 16410 0.0540 0.9046 0.8909 0.8977 0.9835
0.0121 3.0 24615 0.0606 0.8940 0.9027 0.8983 0.9833

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Citation

Bibtex

@software{Ali_Raza,
    author = {Raza, Ali},
    license = { BSD-2-Clause license},
    title = {{Named Entity Recognition using Multinerd}},
    url = {https://github.com/raza4729/NER}
}