--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: named-entity-recognition-distilbert-A results: [] --- # named-entity-recognition-distilbert-A This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the Multinerd dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.8940 - Recall: 0.9027 - F1: 0.8983 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.032 | 1.0 | 8205 | 0.0496 | 0.8843 | 0.8928 | 0.8885 | 0.9825 | | 0.019 | 2.0 | 16410 | 0.0540 | 0.9046 | 0.8909 | 0.8977 | 0.9835 | | 0.0121 | 3.0 | 24615 | 0.0606 | 0.8940 | 0.9027 | 0.8983 | 0.9833 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0 ### Citation ### Bibtex ``` @software{Ali_Raza, author = {Raza, Ali}, license = { BSD-2-Clause license}, title = {{Named Entity Recognition using Multinerd}}, url = {https://github.com/raza4729/NER} } ```