File size: 3,754 Bytes
debc4ef c381a7f debc4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bm
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- ff
- fi
- fr
- fy
- ga
- gd
- gl
- gn
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hy
- id
- ig
- is
- it
- ja
- jv
- ka
- kg
- kk
- km
- kn
- ko
- ku
- ky
- la
- lg
- ln
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- qu
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- ss
- su
- sv
- sw
- ta
- te
- th
- ti
- tl
- tn
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- zh
tags:
- retrieval
- entity-retrieval
- named-entity-disambiguation
- entity-disambiguation
- named-entity-linking
- entity-linking
- text2text-generation
---
# mGENRE
The mGENRE (multilingual Generative ENtity REtrieval) system as presented in [Multilingual Autoregressive Entity Linking](https://arxiv.org/abs/2103.12528) implemented in pytorch.
In a nutshell, mGENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on fine-tuned [mBART](https://arxiv.org/abs/2001.08210) architecture. GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers. The model was first released in the [facebookresearch/GENRE](https://github.com/facebookresearch/GENRE) repository using `fairseq` (the `transformers` models are obtained with a conversion script similar to [this](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py).
This model was trained on 105 languages from Wikipedia.
## BibTeX entry and citation info
**Please consider citing our works if you use code from this repository.**
```bibtex
@article{decao2020multilingual,
author = {De Cao, Nicola and Wu, Ledell and Popat, Kashyap and Artetxe, Mikel
and Goyal, Naman and Plekhanov, Mikhail and Zettlemoyer, Luke
and Cancedda, Nicola and Riedel, Sebastian and Petroni, Fabio},
title = "{Multilingual Autoregressive Entity Linking}",
journal = {Transactions of the Association for Computational Linguistics},
volume = {10},
pages = {274-290},
year = {2022},
month = {03},
issn = {2307-387X},
doi = {10.1162/tacl_a_00460},
url = {https://doi.org/10.1162/tacl\_a\_00460},
eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00460/2004070/tacl\_a\_00460.pdf},
}
```
## Usage
Here is an example of generation for Wikipedia page disambiguation:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-historic-multilingual")
model = AutoModelForSeq2SeqLM.from_pretrained("impresso-project/nel-historic-multilingual").eval()
sentences = ["[START] United Press [END] - On the home front, the British populace remains steadfast in the face of ongoing air raids. In [START] London [END], despite the destruction, the spirit of the people is unbroken, with volunteers and civil defense units working tirelessly to support the war effort. Reports from [START] BUP [START]correspondents highlight the nationwide push for increased production in factories, essential for supplying the front lines with the materials needed for victory. "]
outputs = model.generate(
**tokenizer(sentences, return_tensors="pt"),
num_beams=5,
num_return_sequences=5
)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
which outputs the following top-5 predictions (using constrained beam search)
```
['Albert Einstein >> it',
'Albert Einstein (disambiguation) >> en',
'Alfred Einstein >> it',
'Alberto Einstein >> it',
'Einstein >> it']
```
---
license: agpl-3.0
---
|