File size: 11,938 Bytes
fc83ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env python3
"""

Typical output of the script:
{"topic_model":"tm-fr-all-v2.0","topic_count":100,"lang":"fr","ci_ref":"actionfem-1936-02-15-a-i0022","topics":[],"min_p":0.02}


{
    "topic_count": 100,
    "lang": "de",
    "topics": [
        {"t": "tm-de-all-v2.0_tp02_de", "p": 0.027},
        {"t": "tm-de-all-v2.0_tp11_de", "p": 0.119},
        {"t": "tm-de-all-v2.0_tp26_de", "p": 0.045}
    ],
    "min_p": 0.02,
    "ts": "2024.08.29",
    "id": "actionfem-1927-12-15-a-i0001",
    "sys_id": "tm-de-all-v2.0"
}
"""
import datetime
import logging
import argparse
import traceback
import math
import json
import re
import collections
from typing import Generator, List, Dict, Any, Optional
from smart_open import open


CI_ID_REGEX = re.compile(r"^(.+?/)?([^/]+?-\d{4}-\d{2}-\d{2}-\w-i\d{4})[^/]*$")


class Mallet2TopicAssignment:
    def __init__(
        self,
        args: Optional[argparse.Namespace] = None,
        topic_assignment_threshold: Optional[float] = None,
        lang: Optional[str] = None,
        topic_model: Optional[str] = None,
        numeric_topic_ids: Optional[bool] = None,
        format_type: Optional[str] = None,
        topic_count: Optional[int] = None,
        output: Optional[str] = None,
    ) -> None:

        self.eps = args.topic_assignment_threshold
        self.lang = args.lang
        self.topic_model = args.topic_model
        self.numeric_topic_ids = args.numeric_topic_ids
        self.format_type = args.format_type.lower()  # Normalize case
        self.topic_count = args.topic_count
        self.output = args.output
        self.args = args  # Ensure we keep the args namespace

        self.validate_options()

        self.precision = math.ceil(abs(math.log10(self.eps))) + 1
        self.padding_length = math.ceil(math.log10(self.topic_count))
        self.topic_id_format = (
            f"{self.topic_model}_tp{{t:0{self.padding_length}d}}_{self.lang}"
        )
        self.last_timestamp = (
            datetime.datetime.now(tz=datetime.timezone.utc)
            .replace(microsecond=0)
            .isoformat()
            + "Z"
        )

    def validate_options(self) -> None:
        if self.eps <= 0 or self.eps >= 1:
            raise ValueError("topic_assignment_threshold must be between 0 and 1.")
        if self.format_type == "sparse" and not self.topic_count:
            raise ValueError(
                "The --topic_count option is required when using the 'sparse' format."
            )

    def read_tsv_files(self, filenames: List[str]) -> Generator[List[str], None, None]:

        for filename in filenames:
            yield from self.read_tsv_file(filename)

    def read_tsv_file(self, filename: str) -> Generator[List[str], None, None]:
        line_count = 0
        with open(filename, "r", encoding="utf-8") as file:
            for line in file:
                line_count += 1
                if not line.startswith("#"):
                    yield line.strip().split("\t")
                if line_count % 1000 == 0:
                    logging.info("Processed lines: %s", line_count)

    def convert_matrix_row(self, row: List[str]) -> Dict[str, Any]:
        ci_id = re.sub(CI_ID_REGEX, r"\2", row[1])
        topics = row[2:]
        topic_count = len(topics)
        if self.numeric_topic_ids:
            topics = [
                {"t": t, "p": round(fp, self.precision)}
                for t, p in enumerate(topics)
                if (fp := float(p)) >= self.eps
            ]
        else:
            topics = [
                {
                    "t": self.topic_id_format.format(t=t),
                    "p": round(fp, self.precision),
                }
                for t, p in enumerate(topics)
                if (fp := float(p)) >= self.eps
            ]

        return {
            "ci_id": ci_id,
            "model_id": self.topic_model,
            "lang": self.lang,
            "topic_count": topic_count,
            "topics": topics,
            "min_p": self.eps,
            "ts": self.last_timestamp,
        }

    def convert_sparse_row(self, row: List[str]) -> Dict[str, Any]:
        ci_id = re.sub(CI_ID_REGEX, r"\2", row[1])
        topic_pairs = row[2:]
        topics = []
        for i in range(0, len(topic_pairs), 2):
            t = int(topic_pairs[i])
            p = float(topic_pairs[i + 1])
            if p >= self.eps:
                if self.numeric_topic_ids:
                    topics.append(
                        {
                            "t": t,
                            "p": round(p, math.ceil(abs(math.log10(self.eps))) + 1),
                        }
                    )
                else:
                    topics.append(
                        {
                            "t": self.topic_id_format.format(t=t),
                            "p": round(p, math.ceil(abs(math.log10(self.eps))) + 1),
                        }
                    )

        return {
            "ci_id": ci_id,
            "model_id": self.topic_model,
            "lang": self.lang,
            "topic_count": self.topic_count,
            "topics": topics,
            "min_p": self.eps,
            "ts": self.last_timestamp,
        }

    def parse_mallet_files(
        self, filenames: List[str]
    ) -> Generator[Dict[str, Any], None, None]:
        """
        Process the Mallet topic word weights from multiple files and yield topic assignments in JSON format.

        Args:
            filenames (List[str]): List of paths to the input files.

        Yields:
            Dict[str, Any]: Parsed topic assignment from each line in the input files.
        """
        ci_id_stats = collections.Counter()
        if self.format_type == "sparse":
            convert_row = self.convert_sparse_row
        elif self.format_type == "matrix":
            convert_row = self.convert_matrix_row
        else:
            raise ValueError(f"Invalid format type: {self.format_type}")

        for row in self.read_tsv_files(filenames):
            ci_id = re.sub(CI_ID_REGEX, r"\2", row[1])
            if ci_id in ci_id_stats:
                ci_id_stats["DUPLICATE_COUNT"] += 1
                continue
            ci_id_stats[ci_id] = 1

            yield convert_row(row)

        logging.info("DUPLICATE-COUNT: %d", ci_id_stats["DUPLICATE_COUNT"])

    def run(self) -> Optional[Generator[Dict[str, Any], None, None]]:
        """
        Main method to process the input files based on the command line arguments.
        Returns a generator if output is set to '<generator>', otherwise writes to a file.

        Returns:
            Optional[Generator[Dict[str, Any], None, None]]: A generator for topic assignments
            if output is set to '<generator>', otherwise None.
        """
        if self.output == "<generator>":
            # Return a generator if the output is set to '<generator>'
            return self.parse_mallet_files(self.args.INPUT_FILES)

        try:
            with open(self.output, "w", encoding="utf-8") as out_file:
                for topic_assignment in self.parse_mallet_files(self.args.INPUT_FILES):
                    out_file.write(
                        json.dumps(
                            topic_assignment, ensure_ascii=False, separators=(",", ":")
                        )
                        + "\n"
                    )
        except Exception as e:
            logging.error(f"An error occurred: {e}")
            logging.error("Traceback: %s", traceback.format_exc())
            exit(1)

    @staticmethod
    def setup_logging(options: argparse.Namespace) -> None:
        """
        Set up logging configuration based on command line options.
        """
        log_level = logging.DEBUG if options.debug else logging.INFO
        logging.basicConfig(
            level=log_level, filename=options.logfile if options.logfile else None
        )

    @staticmethod
    def main(
        args: Optional[List[str]],
    ) -> Optional[Generator[Dict[str, Any], None, None]]:
        """
        Static method serving as the entry point of the script.
        If the output option is set to '<generator>', it returns a Python generator
        for topic assignments, otherwise prints results or writes to a file.

        Returns:
            Optional[Generator[Dict[str, Any], None, None]]: Generator for topic assignments
            if output is set to '<generator>', otherwise None.
        """
        parser = argparse.ArgumentParser(
            usage="%(prog)s [OPTIONS] INPUT [INPUT ...]",
            description=(
                "Return topic assignments from mallet textual topic modeling output."
            ),
            epilog="Contact simon.clematide@uzh.ch for more information.",
        )

        parser.add_argument("--version", action="version", version="2024.10.23")
        parser.add_argument(
            "-l", "--logfile", help="Write log information to FILE", metavar="FILE"
        )
        parser.add_argument(
            "-q",
            "--quiet",
            action="store_true",
            help="Do not print status messages to stderr",
        )
        parser.add_argument(
            "-d", "--debug", action="store_true", help="Print debug information"
        )
        parser.add_argument(
            "-L",
            "--lang",
            "--language",
            default="und",
            help="ISO 639 language code two-letter or 'und' for undefined",
        )
        parser.add_argument(
            "-M",
            "--topic_model",
            default="tm000",
            help="Topic model identifier, e.g., tm001",
        )
        parser.add_argument(
            "-N",
            "--numeric_topic_ids",
            action="store_true",
            help="Use numeric topic IDs in the topic assignment",
        )
        parser.add_argument(
            "-T",
            "--topic_assignment_threshold",
            type=float,
            default=0.02,
            help="Minimum probability for inclusion in the output",
        )
        parser.add_argument(
            "-F",
            "--format_type",
            choices=["matrix", "sparse"],
            default="matrix",
            help="Format of the input file: 'matrix' or 'sparse'",
        )
        parser.add_argument(
            "-C",
            "--topic_count",
            type=int,
            help="Needed for formatting ",
            required=True,
        )
        parser.add_argument(
            "-o",
            "--output",
            help=(
                "Path to the output file (%(default)s). If set to '<generator>' it will"
                " return a generator that can be used to enumerate all results in a"
                " flexible way. "
            ),
            default="/dev/stdout",
        )

        parser.add_argument(
            "--level",
            default="INFO",
            choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
            help="Set the logging level. Default: %(default)s",
        )
        parser.add_argument(
            "INPUT_FILES", nargs="+", help="One or more input files to process."
        )

        options = parser.parse_args(args=args)

        # Configure logging
        Mallet2TopicAssignment.setup_logging(options)

        # Validate specific arguments
        if options.format_type == "sparse" and not options.topic_count:
            parser.error(
                "The --topic_count option is required when using the 'sparse' format"
            )

        # Create the application instance
        app = Mallet2TopicAssignment(args=options)

        # Check if output is set to '<generator>' and return a generator if so
        if options.output == "<generator>":
            return app.run()

        # Otherwise, run normally (output to file or stdout)
        app.run()
        return None


if __name__ == "__main__":
    Mallet2TopicAssignment.main()