File size: 4,432 Bytes
61ee4e5
 
569e20f
61ee4e5
569e20f
61ee4e5
 
 
569e20f
 
 
 
 
61ee4e5
 
 
 
 
 
 
 
 
 
569e20f
61ee4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-qlora
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-dpo-qlora-fsdp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-qlora-fsdp

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8742
- Rewards/chosen: 0.0082
- Rewards/rejected: 0.0003
- Rewards/accuracies: 0.6726
- Rewards/margins: 0.0079
- Logps/rejected: -242.3632
- Logps/chosen: -266.8597
- Logits/rejected: -2.3743
- Logits/chosen: -2.4108

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 10
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 4
- total_train_batch_size: 240
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.2536        | 0.39  | 100  | 0.2792          | 0.0024         | 0.0006           | 0.6042             | 0.0019          | -242.3385      | -267.4340    | -2.3735         | -2.4122       |
| 0.5352        | 0.79  | 200  | 0.5010          | 0.0011         | -0.0019          | 0.5744             | 0.0030          | -242.5832      | -267.5640    | -2.3629         | -2.4014       |
| 0.3676        | 1.18  | 300  | 0.8293          | 0.0079         | 0.0027           | 0.5982             | 0.0052          | -242.1211      | -266.8856    | -2.3788         | -2.4168       |
| 0.366         | 1.57  | 400  | 0.8239          | 0.0065         | 0.0007           | 0.6399             | 0.0058          | -242.3221      | -267.0256    | -2.3774         | -2.4146       |
| 0.292         | 1.96  | 500  | 0.8146          | 0.0050         | -0.0005          | 0.6399             | 0.0055          | -242.4462      | -267.1794    | -2.3978         | -2.4343       |
| 0.1355        | 2.36  | 600  | 0.9651          | 0.0047         | -0.0013          | 0.6161             | 0.0060          | -242.5212      | -267.2061    | -2.3796         | -2.4178       |
| 0.1327        | 2.75  | 700  | 0.9985          | 0.0046         | -0.0019          | 0.6339             | 0.0065          | -242.5883      | -267.2230    | -2.3690         | -2.4066       |
| 0.0389        | 3.14  | 800  | 0.8932          | 0.0080         | 0.0003           | 0.6518             | 0.0078          | -242.3696      | -266.8748    | -2.3563         | -2.3947       |
| 0.029         | 3.53  | 900  | 0.9392          | 0.0090         | 0.0008           | 0.6577             | 0.0082          | -242.3114      | -266.7798    | -2.3752         | -2.4118       |
| 0.0198        | 3.93  | 1000 | 0.8200          | 0.0087         | 0.0010           | 0.6577             | 0.0077          | -242.2917      | -266.8047    | -2.3780         | -2.4145       |
| 0.0059        | 4.32  | 1100 | 0.8904          | 0.0080         | 0.0002           | 0.6577             | 0.0078          | -242.3739      | -266.8760    | -2.3744         | -2.4108       |
| 0.0042        | 4.71  | 1200 | 0.8779          | 0.0080         | 0.0001           | 0.6518             | 0.0080          | -242.3892      | -266.8771    | -2.3753         | -2.4119       |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2