File size: 3,882 Bytes
8b1b653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: unsloth/Qwen2-7B
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Qwen2-7B_pct_reverse_r16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Qwen2-7B_pct_reverse_r16

This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0341        | 0.0206 | 8    | 1.9528          |
| 2.0078        | 0.0412 | 16   | 1.9550          |
| 2.0269        | 0.0618 | 24   | 1.9357          |
| 1.9472        | 0.0824 | 32   | 1.9405          |
| 1.993         | 0.1031 | 40   | 1.9381          |
| 1.9936        | 0.1237 | 48   | 1.9402          |
| 2.0043        | 0.1443 | 56   | 1.9410          |
| 1.9356        | 0.1649 | 64   | 1.9369          |
| 1.9953        | 0.1855 | 72   | 1.9396          |
| 2.0184        | 0.2061 | 80   | 1.9405          |
| 1.995         | 0.2267 | 88   | 1.9410          |
| 1.9307        | 0.2473 | 96   | 1.9407          |
| 2.0037        | 0.2680 | 104  | 1.9414          |
| 1.889         | 0.2886 | 112  | 1.9397          |
| 1.9455        | 0.3092 | 120  | 1.9401          |
| 1.9789        | 0.3298 | 128  | 1.9438          |
| 1.9642        | 0.3504 | 136  | 1.9408          |
| 1.9387        | 0.3710 | 144  | 1.9405          |
| 2.0036        | 0.3916 | 152  | 1.9394          |
| 2.0407        | 0.4122 | 160  | 1.9393          |
| 2.0519        | 0.4329 | 168  | 1.9385          |
| 1.9361        | 0.4535 | 176  | 1.9396          |
| 1.9812        | 0.4741 | 184  | 1.9404          |
| 1.9947        | 0.4947 | 192  | 1.9382          |
| 1.9343        | 0.5153 | 200  | 1.9353          |
| 1.9707        | 0.5359 | 208  | 1.9357          |
| 2.0131        | 0.5565 | 216  | 1.9351          |
| 1.9416        | 0.5771 | 224  | 1.9310          |
| 1.9652        | 0.5977 | 232  | 1.9351          |
| 1.9156        | 0.6184 | 240  | 1.9266          |
| 1.9405        | 0.6390 | 248  | 1.9260          |
| 1.9909        | 0.6596 | 256  | 1.9250          |
| 1.9179        | 0.6802 | 264  | 1.9232          |
| 1.9877        | 0.7008 | 272  | 1.9217          |
| 1.8745        | 0.7214 | 280  | 1.9207          |
| 2.016         | 0.7420 | 288  | 1.9195          |
| 1.9238        | 0.7626 | 296  | 1.9185          |
| 1.9414        | 0.7833 | 304  | 1.9193          |
| 1.9417        | 0.8039 | 312  | 1.9172          |
| 1.9647        | 0.8245 | 320  | 1.9169          |
| 1.9704        | 0.8451 | 328  | 1.9172          |
| 1.9629        | 0.8657 | 336  | 1.9157          |
| 1.9574        | 0.8863 | 344  | 1.9150          |
| 1.9278        | 0.9069 | 352  | 1.9143          |
| 2.0079        | 0.9275 | 360  | 1.9140          |
| 1.9203        | 0.9481 | 368  | 1.9138          |
| 1.9834        | 0.9688 | 376  | 1.9139          |
| 1.8809        | 0.9894 | 384  | 1.9143          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1