Feature Extraction
PyTorch
Bioacoustics
File size: 3,855 Bytes
f7d071a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pickle

import torch
import torch.distributed as dist


class Comm(object):
    def __init__(self, local_rank=0):
        self.local_rank = 0

    @property
    def world_size(self):
        if not dist.is_available():
            return 1
        if not dist.is_initialized():
            return 1
        return dist.get_world_size()

    @property
    def rank(self):
        if not dist.is_available():
            return 0
        if not dist.is_initialized():
            return 0
        return dist.get_rank()

    @property
    def local_rank(self):
        if not dist.is_available():
            return 0
        if not dist.is_initialized():
            return 0
        return self._local_rank

    @local_rank.setter
    def local_rank(self, value):
        if not dist.is_available():
            self._local_rank = 0
        if not dist.is_initialized():
            self._local_rank = 0
        self._local_rank = value

    @property
    def head(self):
        return 'Rank[{}/{}]'.format(self.rank, self.world_size)
   
    def is_main_process(self):
        return self.rank == 0

    def synchronize(self):
        """
        Helper function to synchronize (barrier) among all processes when
        using distributed training
        """
        if self.world_size == 1:
            return
        dist.barrier()


comm = Comm()


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = comm.world_size
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to("cuda")

    # obtain Tensor size of each rank
    local_size = torch.LongTensor([tensor.numel()]).to("cuda")
    size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
    if local_size != max_size:
        padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that process with rank
    0 has the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = comm.world_size
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.reduce(values, dst=0)
        if dist.get_rank() == 0 and average:
            # only main process gets accumulated, so only divide by
            # world_size in this case
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict