File size: 8,551 Bytes
ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c f1dd9a3 ce5347c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
base_model: KB/bert-base-swedish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: news_category_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# news_category_classification
This model is a fine-tuned version of [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8615
- Accuracy: 0.7286
- F1: 0.7300
- Precision: 0.7351
- Recall: 0.7286
- Accuracy Label Arts, culture, entertainment and media: 0.8333
- Accuracy Label Conflict, war and peace: 0.7234
- Accuracy Label Crime, law and justice: 0.7919
- Accuracy Label Disaster, accident, and emergency incident: 0.8931
- Accuracy Label Economy, business, and finance: 0.7975
- Accuracy Label Environment: 0.4375
- Accuracy Label Health: 0.7
- Accuracy Label Human interest: 0.3333
- Accuracy Label Labour: 0.5
- Accuracy Label Lifestyle and leisure: 0.5
- Accuracy Label Politics: 0.6331
- Accuracy Label Religion: 0.0
- Accuracy Label Science and technology: 0.4167
- Accuracy Label Society: 0.4561
- Accuracy Label Sport: 0.9615
- Accuracy Label Weather: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Arts, culture, entertainment and media | Accuracy Label Conflict, war and peace | Accuracy Label Crime, law and justice | Accuracy Label Disaster, accident, and emergency incident | Accuracy Label Economy, business, and finance | Accuracy Label Environment | Accuracy Label Health | Accuracy Label Human interest | Accuracy Label Labour | Accuracy Label Lifestyle and leisure | Accuracy Label Politics | Accuracy Label Religion | Accuracy Label Science and technology | Accuracy Label Society | Accuracy Label Sport | Accuracy Label Weather |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------------------------------------:|:--------------------------------------:|:-------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------:|:--------------------------:|:---------------------:|:-----------------------------:|:---------------------:|:------------------------------------:|:-----------------------:|:-----------------------:|:-------------------------------------:|:----------------------:|:--------------------:|:----------------------:|
| 1.7671 | 0.3373 | 200 | 1.5661 | 0.5554 | 0.5206 | 0.5828 | 0.5554 | 0.5833 | 0.7553 | 0.8960 | 0.3206 | 0.6709 | 0.125 | 0.7 | 0.0 | 0.5 | 0.5 | 0.2878 | 0.0 | 0.0 | 0.0351 | 0.9615 | 1.0 |
| 1.0248 | 0.6745 | 400 | 1.0774 | 0.6709 | 0.6591 | 0.6984 | 0.6709 | 0.9167 | 0.7979 | 0.8150 | 0.8626 | 0.7215 | 0.375 | 0.9 | 0.25 | 1.0 | 0.5 | 0.3094 | 0.0 | 0.4167 | 0.1930 | 0.9615 | 1.0 |
| 0.5845 | 1.0118 | 600 | 0.9907 | 0.6536 | 0.6563 | 0.6829 | 0.6536 | 0.9167 | 0.7287 | 0.6763 | 0.8779 | 0.7215 | 0.4375 | 0.8 | 0.0 | 1.0 | 0.75 | 0.3669 | 0.0 | 0.4167 | 0.4386 | 0.9231 | 1.0 |
| 0.6104 | 1.3491 | 800 | 0.8674 | 0.7240 | 0.7233 | 0.7333 | 0.7240 | 0.8333 | 0.7021 | 0.8324 | 0.8779 | 0.7848 | 0.5 | 0.7 | 0.25 | 1.0 | 0.75 | 0.6331 | 0.0 | 0.25 | 0.3684 | 0.9615 | 1.0 |
| 0.4223 | 1.6863 | 1000 | 0.8602 | 0.7240 | 0.7250 | 0.7387 | 0.7240 | 0.75 | 0.6755 | 0.8844 | 0.8550 | 0.7342 | 0.5 | 0.9 | 0.3333 | 1.0 | 0.625 | 0.6475 | 0.0 | 0.3333 | 0.3684 | 0.9615 | 0.0 |
| 0.3104 | 2.0236 | 1200 | 0.8565 | 0.7263 | 0.7266 | 0.7326 | 0.7263 | 0.8333 | 0.7181 | 0.8324 | 0.9084 | 0.7722 | 0.4375 | 0.7 | 0.25 | 0.5 | 0.75 | 0.5612 | 0.0 | 0.4167 | 0.4737 | 0.9615 | 1.0 |
| 0.2855 | 2.3609 | 1400 | 0.8981 | 0.7240 | 0.7283 | 0.7402 | 0.7240 | 0.75 | 0.7394 | 0.8324 | 0.8550 | 0.7975 | 0.5 | 0.7 | 0.3333 | 0.5 | 0.625 | 0.5899 | 0.0 | 0.4167 | 0.3860 | 0.9615 | 1.0 |
| 0.217 | 2.6981 | 1600 | 0.8667 | 0.7309 | 0.7292 | 0.7358 | 0.7309 | 0.75 | 0.7447 | 0.8382 | 0.8931 | 0.8481 | 0.375 | 0.8 | 0.3333 | 0.5 | 0.5 | 0.5396 | 0.0 | 0.4167 | 0.4561 | 0.9615 | 1.0 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|