File size: 8,551 Bytes
ce5347c
f1dd9a3
ce5347c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1dd9a3
ce5347c
f1dd9a3
 
 
 
 
ce5347c
f1dd9a3
 
ce5347c
f1dd9a3
 
 
ce5347c
 
 
f1dd9a3
ce5347c
 
f1dd9a3
ce5347c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1dd9a3
 
 
 
 
 
 
 
ce5347c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: KB/bert-base-swedish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: news_category_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# news_category_classification

This model is a fine-tuned version of [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8615
- Accuracy: 0.7286
- F1: 0.7300
- Precision: 0.7351
- Recall: 0.7286
- Accuracy Label Arts, culture, entertainment and media: 0.8333
- Accuracy Label Conflict, war and peace: 0.7234
- Accuracy Label Crime, law and justice: 0.7919
- Accuracy Label Disaster, accident, and emergency incident: 0.8931
- Accuracy Label Economy, business, and finance: 0.7975
- Accuracy Label Environment: 0.4375
- Accuracy Label Health: 0.7
- Accuracy Label Human interest: 0.3333
- Accuracy Label Labour: 0.5
- Accuracy Label Lifestyle and leisure: 0.5
- Accuracy Label Politics: 0.6331
- Accuracy Label Religion: 0.0
- Accuracy Label Science and technology: 0.4167
- Accuracy Label Society: 0.4561
- Accuracy Label Sport: 0.9615
- Accuracy Label Weather: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label Arts, culture, entertainment and media | Accuracy Label Conflict, war and peace | Accuracy Label Crime, law and justice | Accuracy Label Disaster, accident, and emergency incident | Accuracy Label Economy, business, and finance | Accuracy Label Environment | Accuracy Label Health | Accuracy Label Human interest | Accuracy Label Labour | Accuracy Label Lifestyle and leisure | Accuracy Label Politics | Accuracy Label Religion | Accuracy Label Science and technology | Accuracy Label Society | Accuracy Label Sport | Accuracy Label Weather |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------------------------------------:|:--------------------------------------:|:-------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------:|:--------------------------:|:---------------------:|:-----------------------------:|:---------------------:|:------------------------------------:|:-----------------------:|:-----------------------:|:-------------------------------------:|:----------------------:|:--------------------:|:----------------------:|
| 1.7671        | 0.3373 | 200  | 1.5661          | 0.5554   | 0.5206 | 0.5828    | 0.5554 | 0.5833                                                | 0.7553                                 | 0.8960                                | 0.3206                                                    | 0.6709                                        | 0.125                      | 0.7                   | 0.0                           | 0.5                   | 0.5                                  | 0.2878                  | 0.0                     | 0.0                                   | 0.0351                 | 0.9615               | 1.0                    |
| 1.0248        | 0.6745 | 400  | 1.0774          | 0.6709   | 0.6591 | 0.6984    | 0.6709 | 0.9167                                                | 0.7979                                 | 0.8150                                | 0.8626                                                    | 0.7215                                        | 0.375                      | 0.9                   | 0.25                          | 1.0                   | 0.5                                  | 0.3094                  | 0.0                     | 0.4167                                | 0.1930                 | 0.9615               | 1.0                    |
| 0.5845        | 1.0118 | 600  | 0.9907          | 0.6536   | 0.6563 | 0.6829    | 0.6536 | 0.9167                                                | 0.7287                                 | 0.6763                                | 0.8779                                                    | 0.7215                                        | 0.4375                     | 0.8                   | 0.0                           | 1.0                   | 0.75                                 | 0.3669                  | 0.0                     | 0.4167                                | 0.4386                 | 0.9231               | 1.0                    |
| 0.6104        | 1.3491 | 800  | 0.8674          | 0.7240   | 0.7233 | 0.7333    | 0.7240 | 0.8333                                                | 0.7021                                 | 0.8324                                | 0.8779                                                    | 0.7848                                        | 0.5                        | 0.7                   | 0.25                          | 1.0                   | 0.75                                 | 0.6331                  | 0.0                     | 0.25                                  | 0.3684                 | 0.9615               | 1.0                    |
| 0.4223        | 1.6863 | 1000 | 0.8602          | 0.7240   | 0.7250 | 0.7387    | 0.7240 | 0.75                                                  | 0.6755                                 | 0.8844                                | 0.8550                                                    | 0.7342                                        | 0.5                        | 0.9                   | 0.3333                        | 1.0                   | 0.625                                | 0.6475                  | 0.0                     | 0.3333                                | 0.3684                 | 0.9615               | 0.0                    |
| 0.3104        | 2.0236 | 1200 | 0.8565          | 0.7263   | 0.7266 | 0.7326    | 0.7263 | 0.8333                                                | 0.7181                                 | 0.8324                                | 0.9084                                                    | 0.7722                                        | 0.4375                     | 0.7                   | 0.25                          | 0.5                   | 0.75                                 | 0.5612                  | 0.0                     | 0.4167                                | 0.4737                 | 0.9615               | 1.0                    |
| 0.2855        | 2.3609 | 1400 | 0.8981          | 0.7240   | 0.7283 | 0.7402    | 0.7240 | 0.75                                                  | 0.7394                                 | 0.8324                                | 0.8550                                                    | 0.7975                                        | 0.5                        | 0.7                   | 0.3333                        | 0.5                   | 0.625                                | 0.5899                  | 0.0                     | 0.4167                                | 0.3860                 | 0.9615               | 1.0                    |
| 0.217         | 2.6981 | 1600 | 0.8667          | 0.7309   | 0.7292 | 0.7358    | 0.7309 | 0.75                                                  | 0.7447                                 | 0.8382                                | 0.8931                                                    | 0.8481                                        | 0.375                      | 0.8                   | 0.3333                        | 0.5                   | 0.5                                  | 0.5396                  | 0.0                     | 0.4167                                | 0.4561                 | 0.9615               | 1.0                    |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1