File size: 2,594 Bytes
53883b4
e45188a
 
 
 
 
 
 
 
 
 
 
 
53883b4
 
e45188a
 
53883b4
e45188a
53883b4
e45188a
 
 
 
 
 
 
 
 
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
53883b4
e45188a
 
 
 
 
 
 
 
 
 
 
53883b4
e45188a
53883b4
e45188a
 
 
 
 
 
 
 
53883b4
 
e45188a
53883b4
e45188a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-clickbait-titll
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classify-clickbait-titll

This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0173
- Accuracy: 0.9951
- F1: 0.9951
- Precision: 0.9951
- Recall: 0.9951
- Accuracy Label Clickbait: 0.9866
- Accuracy Label Factual: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:|
| 0.0561        | 0.4831 | 100  | 0.0488          | 0.9927   | 0.9927 | 0.9927    | 0.9927 | 0.9933                   | 0.9923                 |
| 0.0037        | 0.9662 | 200  | 0.0097          | 0.9988   | 0.9988 | 0.9988    | 0.9988 | 0.9967                   | 1.0                    |
| 0.0012        | 1.4493 | 300  | 0.0016          | 1.0      | 1.0    | 1.0       | 1.0    | 1.0                      | 1.0                    |
| 0.0012        | 1.9324 | 400  | 0.0016          | 1.0      | 1.0    | 1.0       | 1.0    | 1.0                      | 1.0                    |
| 0.0433        | 2.4155 | 500  | 0.0020          | 0.9988   | 0.9988 | 0.9988    | 0.9988 | 0.9967                   | 1.0                    |
| 0.0003        | 2.8986 | 600  | 0.0167          | 0.9951   | 0.9951 | 0.9951    | 0.9951 | 0.9866                   | 1.0                    |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1