File size: 2,594 Bytes
53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a 53883b4 e45188a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-clickbait-titll
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# classify-clickbait-titll
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0173
- Accuracy: 0.9951
- F1: 0.9951
- Precision: 0.9951
- Recall: 0.9951
- Accuracy Label Clickbait: 0.9866
- Accuracy Label Factual: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:|
| 0.0561 | 0.4831 | 100 | 0.0488 | 0.9927 | 0.9927 | 0.9927 | 0.9927 | 0.9933 | 0.9923 |
| 0.0037 | 0.9662 | 200 | 0.0097 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
| 0.0012 | 1.4493 | 300 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0012 | 1.9324 | 400 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0433 | 2.4155 | 500 | 0.0020 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | 0.9967 | 1.0 |
| 0.0003 | 2.8986 | 600 | 0.0167 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | 0.9866 | 1.0 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|