ikura31's picture
Upload tokenizer
65a493b verified
|
raw
history blame
3.21 kB
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistral_docs_sum_p1_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_docs_sum_p1_full
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1167 | 0.0277 | 200 | 2.1333 |
| 2.3428 | 0.0553 | 400 | 1.6966 |
| 1.3784 | 0.0830 | 600 | 1.4972 |
| 1.456 | 0.1107 | 800 | 1.3942 |
| 1.3227 | 0.1383 | 1000 | 1.3084 |
| 1.2535 | 0.1660 | 1200 | 1.2001 |
| 1.0612 | 0.1937 | 1400 | 1.0451 |
| 0.8815 | 0.2213 | 1600 | 0.9632 |
| 0.8971 | 0.2490 | 1800 | 0.9132 |
| 0.7908 | 0.2767 | 2000 | 0.8712 |
| 0.7549 | 0.3043 | 2200 | 0.8309 |
| 0.8099 | 0.3320 | 2400 | 0.8058 |
| 0.6891 | 0.3597 | 2600 | 0.7879 |
| 0.5204 | 0.3873 | 2800 | 0.7684 |
| 0.6249 | 0.4150 | 3000 | 0.7515 |
| 0.6764 | 0.4427 | 3200 | 0.7342 |
| 0.6996 | 0.4703 | 3400 | 0.7214 |
| 0.6371 | 0.4980 | 3600 | 0.7084 |
| 0.6694 | 0.5257 | 3800 | 0.6951 |
| 0.7048 | 0.5533 | 4000 | 0.6845 |
| 0.7265 | 0.5810 | 4200 | 0.6778 |
| 0.5663 | 0.6087 | 4400 | 0.6657 |
| 0.6222 | 0.6363 | 4600 | 0.6595 |
| 0.6463 | 0.6640 | 4800 | 0.6488 |
| 0.5754 | 0.6917 | 5000 | 0.6410 |
| 0.6208 | 0.7193 | 5200 | 0.6363 |
| 0.5613 | 0.7470 | 5400 | 0.6275 |
| 0.6316 | 0.7747 | 5600 | 0.6227 |
| 0.6564 | 0.8023 | 5800 | 0.6159 |
| 0.633 | 0.8300 | 6000 | 0.6077 |
| 0.5268 | 0.8577 | 6200 | 0.6022 |
| 0.4166 | 0.8853 | 6400 | 0.5978 |
| 0.6539 | 0.9130 | 6600 | 0.5926 |
| 0.5695 | 0.9407 | 6800 | 0.5875 |
| 0.6358 | 0.9683 | 7000 | 0.5845 |
| 0.5318 | 0.9960 | 7200 | 0.5829 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1