File size: 2,404 Bytes
1a4b93f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1687
- Precision: 0.9382
- Recall: 0.9574
- F1: 0.9477
- Accuracy: 0.9597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.56 | 250 | 0.3730 | 0.8662 | 0.8708 | 0.8685 | 0.9042 |
| 0.3943 | 3.12 | 500 | 0.2683 | 0.8939 | 0.9027 | 0.8983 | 0.9279 |
| 0.3943 | 4.69 | 750 | 0.2232 | 0.9248 | 0.9339 | 0.9293 | 0.9474 |
| 0.1559 | 6.25 | 1000 | 0.2129 | 0.9301 | 0.9407 | 0.9354 | 0.9504 |
| 0.1559 | 7.81 | 1250 | 0.1782 | 0.9289 | 0.9529 | 0.9407 | 0.9563 |
| 0.082 | 9.38 | 1500 | 0.1876 | 0.9327 | 0.9483 | 0.9405 | 0.9555 |
| 0.082 | 10.94 | 1750 | 0.1746 | 0.9416 | 0.9559 | 0.9487 | 0.9606 |
| 0.0486 | 12.5 | 2000 | 0.1848 | 0.9349 | 0.9498 | 0.9423 | 0.9550 |
| 0.0486 | 14.06 | 2250 | 0.1739 | 0.9439 | 0.9590 | 0.9514 | 0.9623 |
| 0.0351 | 15.62 | 2500 | 0.1687 | 0.9382 | 0.9574 | 0.9477 | 0.9597 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|