ikeno-ada commited on
Commit
e380fe2
·
verified ·
1 Parent(s): c94e638

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +564 -133
README.md CHANGED
@@ -1,201 +1,632 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
 
 
 
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - multilingual
5
+ - en
6
+ - ru
7
+ - es
8
+ - fr
9
+ - de
10
+ - it
11
+ - pt
12
+ - pl
13
+ - nl
14
+ - vi
15
+ - tr
16
+ - sv
17
+ - id
18
+ - ro
19
+ - cs
20
+ - zh
21
+ - hu
22
+ - ja
23
+ - th
24
+ - fi
25
+ - fa
26
+ - uk
27
+ - da
28
+ - el
29
+ - "no"
30
+ - bg
31
+ - sk
32
+ - ko
33
+ - ar
34
+ - lt
35
+ - ca
36
+ - sl
37
+ - he
38
+ - et
39
+ - lv
40
+ - hi
41
+ - sq
42
+ - ms
43
+ - az
44
+ - sr
45
+ - ta
46
+ - hr
47
+ - kk
48
+ - is
49
+ - ml
50
+ - mr
51
+ - te
52
+ - af
53
+ - gl
54
+ - fil
55
+ - be
56
+ - mk
57
+ - eu
58
+ - bn
59
+ - ka
60
+ - mn
61
+ - bs
62
+ - uz
63
+ - ur
64
+ - sw
65
+ - yue
66
+ - ne
67
+ - kn
68
+ - kaa
69
+ - gu
70
+ - si
71
+ - cy
72
+ - eo
73
+ - la
74
+ - hy
75
+ - ky
76
+ - tg
77
+ - ga
78
+ - mt
79
+ - my
80
+ - km
81
+ - tt
82
+ - so
83
+ - ku
84
+ - ps
85
+ - pa
86
+ - rw
87
+ - lo
88
+ - ha
89
+ - dv
90
+ - fy
91
+ - lb
92
+ - ckb
93
+ - mg
94
+ - gd
95
+ - am
96
+ - ug
97
+ - ht
98
+ - grc
99
+ - hmn
100
+ - sd
101
+ - jv
102
+ - mi
103
+ - tk
104
+ - ceb
105
+ - yi
106
+ - ba
107
+ - fo
108
+ - or
109
+ - xh
110
+ - su
111
+ - kl
112
+ - ny
113
+ - sm
114
+ - sn
115
+ - co
116
+ - zu
117
+ - ig
118
+ - yo
119
+ - pap
120
+ - st
121
+ - haw
122
+ - as
123
+ - oc
124
+ - cv
125
+ - lus
126
+ - tet
127
+ - gsw
128
+ - sah
129
+ - br
130
+ - rm
131
+ - sa
132
+ - bo
133
+ - om
134
+ - se
135
+ - ce
136
+ - cnh
137
+ - ilo
138
+ - hil
139
+ - udm
140
+ - os
141
+ - lg
142
+ - ti
143
+ - vec
144
+ - ts
145
+ - tyv
146
+ - kbd
147
+ - ee
148
+ - iba
149
+ - av
150
+ - kha
151
+ - to
152
+ - tn
153
+ - nso
154
+ - fj
155
+ - zza
156
+ - ak
157
+ - ada
158
+ - otq
159
+ - dz
160
+ - bua
161
+ - cfm
162
+ - ln
163
+ - chm
164
+ - gn
165
+ - krc
166
+ - wa
167
+ - hif
168
+ - yua
169
+ - srn
170
+ - war
171
+ - rom
172
+ - bik
173
+ - pam
174
+ - sg
175
+ - lu
176
+ - ady
177
+ - kbp
178
+ - syr
179
+ - ltg
180
+ - myv
181
+ - iso
182
+ - kac
183
+ - bho
184
+ - ay
185
+ - kum
186
+ - qu
187
+ - za
188
+ - pag
189
+ - ngu
190
+ - ve
191
+ - pck
192
+ - zap
193
+ - tyz
194
+ - hui
195
+ - bbc
196
+ - tzo
197
+ - tiv
198
+ - ksd
199
+ - gom
200
+ - min
201
+ - ang
202
+ - nhe
203
+ - bgp
204
+ - nzi
205
+ - nnb
206
+ - nv
207
+ - zxx
208
+ - bci
209
+ - kv
210
+ - new
211
+ - mps
212
+ - alt
213
+ - meu
214
+ - bew
215
+ - fon
216
+ - iu
217
+ - abt
218
+ - mgh
219
+ - mnw
220
+ - tvl
221
+ - dov
222
+ - tlh
223
+ - ho
224
+ - kw
225
+ - mrj
226
+ - meo
227
+ - crh
228
+ - mbt
229
+ - emp
230
+ - ace
231
+ - ium
232
+ - mam
233
+ - gym
234
+ - mai
235
+ - crs
236
+ - pon
237
+ - ubu
238
+ - fip
239
+ - quc
240
+ - gv
241
+ - kj
242
+ - btx
243
+ - ape
244
+ - chk
245
+ - rcf
246
+ - shn
247
+ - tzh
248
+ - mdf
249
+ - ppk
250
+ - ss
251
+ - gag
252
+ - cab
253
+ - kri
254
+ - seh
255
+ - ibb
256
+ - tbz
257
+ - bru
258
+ - enq
259
+ - ach
260
+ - cuk
261
+ - kmb
262
+ - wo
263
+ - kek
264
+ - qub
265
+ - tab
266
+ - bts
267
+ - kos
268
+ - rwo
269
+ - cak
270
+ - tuc
271
+ - bum
272
+ - cjk
273
+ - gil
274
+ - stq
275
+ - tsg
276
+ - quh
277
+ - mak
278
+ - arn
279
+ - ban
280
+ - jiv
281
+ - sja
282
+ - yap
283
+ - tcy
284
+ - toj
285
+ - twu
286
+ - xal
287
+ - amu
288
+ - rmc
289
+ - hus
290
+ - nia
291
+ - kjh
292
+ - bm
293
+ - guh
294
+ - mas
295
+ - acf
296
+ - dtp
297
+ - ksw
298
+ - bzj
299
+ - din
300
+ - zne
301
+ - mad
302
+ - msi
303
+ - mag
304
+ - mkn
305
+ - kg
306
+ - lhu
307
+ - ch
308
+ - qvi
309
+ - mh
310
+ - djk
311
+ - sus
312
+ - mfe
313
+ - srm
314
+ - dyu
315
+ - ctu
316
+ - gui
317
+ - pau
318
+ - inb
319
+ - bi
320
+ - mni
321
+ - guc
322
+ - jam
323
+ - wal
324
+ - jac
325
+ - bas
326
+ - gor
327
+ - skr
328
+ - nyu
329
+ - noa
330
+ - sda
331
+ - gub
332
+ - nog
333
+ - cni
334
+ - teo
335
+ - tdx
336
+ - sxn
337
+ - rki
338
+ - nr
339
+ - frp
340
+ - alz
341
+ - taj
342
+ - lrc
343
+ - cce
344
+ - rn
345
+ - jvn
346
+ - hvn
347
+ - nij
348
+ - dwr
349
+ - izz
350
+ - msm
351
+ - bus
352
+ - ktu
353
+ - chr
354
+ - maz
355
+ - tzj
356
+ - suz
357
+ - knj
358
+ - bim
359
+ - gvl
360
+ - bqc
361
+ - tca
362
+ - pis
363
+ - prk
364
+ - laj
365
+ - mel
366
+ - qxr
367
+ - niq
368
+ - ahk
369
+ - shp
370
+ - hne
371
+ - spp
372
+ - koi
373
+ - krj
374
+ - quf
375
+ - luz
376
+ - agr
377
+ - tsc
378
+ - mqy
379
+ - gof
380
+ - gbm
381
+ - miq
382
+ - dje
383
+ - awa
384
+ - bjj
385
+ - qvz
386
+ - sjp
387
+ - tll
388
+ - raj
389
+ - kjg
390
+ - bgz
391
+ - quy
392
+ - cbk
393
+ - akb
394
+ - oj
395
+ - ify
396
+ - mey
397
+ - ks
398
+ - cac
399
+ - brx
400
+ - qup
401
+ - syl
402
+ - jax
403
+ - ff
404
+ - ber
405
+ - tks
406
+ - trp
407
+ - mrw
408
+ - adh
409
+ - smt
410
+ - srr
411
+ - ffm
412
+ - qvc
413
+ - mtr
414
+ - ann
415
+ - kaa
416
+ - aa
417
+ - noe
418
+ - nut
419
+ - gyn
420
+ - kwi
421
+ - xmm
422
+ - msb
423
  library_name: transformers
424
+ tags:
425
+ - text2text-generation
426
+ - text-generation-inference
427
+ datasets:
428
+ - allenai/MADLAD-400
429
+ pipeline_tag: translation
430
+
431
+ widget:
432
+ - text: "<2en> Como vai, amigo?"
433
+ example_title: "Translation to English"
434
+ - text: "<2de> Do you speak German?"
435
+ example_title: "Translation to German"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
 
437
+ ---
 
 
 
 
 
 
438
 
 
439
 
440
+ # Table of Contents
441
 
442
+ 0. [TL;DR](#TL;DR)
443
+ 1. [Model Details](#model-details)
444
+ 2. [Usage](#usage)
445
+ 3. [Uses](#uses)
446
+ 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
447
+ 5. [Training Details](#training-details)
448
+ 6. [Evaluation](#evaluation)
449
+ 7. [Environmental Impact](#environmental-impact)
450
+ 8. [Citation](#citation)
451
 
452
+ # TL;DR
453
 
454
+ MADLAD-400-3B-MT is a multilingual machine translation model based on the T5 architecture that was
455
+ trained on 1 trillion tokens covering over 450 languages using publicly available data.
456
+ It is competitive with models that are significantly larger.
457
 
458
+ **Disclaimer**: [Juarez Bochi](https://huggingface.co/jbochi), who was not involved in this research, converted
459
+ the original weights and wrote the contents of this model card based on the original paper and Flan-T5.
460
 
461
+ # Model Details
462
 
463
+ ## Model Description
464
 
465
+ - **Model type:** Language model
466
+ - **Language(s) (NLP):** Multilingual (400+ languages)
467
+ - **License:** Apache 2.0
468
+ - **Related Models:** [All MADLAD-400 Checkpoints](https://huggingface.co/models?search=madlad)
469
+ - **Original Checkpoints:** [All Original MADLAD-400 Checkpoints](https://github.com/google-research/google-research/tree/master/madlad_400)
470
+ - **Resources for more information:**
471
+ - [Research paper](https://arxiv.org/abs/2309.04662)
472
+ - [GitHub Repo](https://github.com/google-research/t5x)
473
+ - [Hugging Face MADLAD-400 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/MADLAD-400) - [Pending PR](https://github.com/huggingface/transformers/pull/27471)
474
 
475
+ # Usage
476
 
477
+ Find below some example scripts on how to use the model:
478
 
479
+ ## Using the Pytorch model with `transformers`
480
 
481
+ ### Running the model on a CPU or GPU
482
 
483
+ <details>
484
+ <summary> Click to expand </summary>
485
 
486
+ First, install the Python packages that are required:
487
 
488
+ `pip install transformers accelerate sentencepiece`
489
 
490
+ ```python
491
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
492
 
493
+ model_name = 'jbochi/madlad400-3b-mt'
494
+ model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
495
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
496
 
497
+ text = "<2pt> I love pizza!"
498
+ input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
499
+ outputs = model.generate(input_ids=input_ids)
500
 
501
+ tokenizer.decode(outputs[0], skip_special_tokens=True)
502
+ # Eu adoro pizza!
503
+ ```
504
 
505
+ </details>
506
 
507
+ ## Running the model with Candle
508
 
509
+ <details>
510
+ <summary> Click to expand </summary>
511
 
512
+ Usage with [candle](https://github.com/huggingface/candle):
513
 
514
+ ```bash
515
+ $ cargo run --example t5 --release -- \
516
+ --model-id "jbochi/madlad400-3b-mt" \
517
+ --prompt "<2de> How are you, my friend?" \
518
+ --decode --temperature 0
519
+ ```
520
 
521
+ We also provide a quantized model (1.65 GB vs the original 11.8 GB file):
522
 
523
+ ```
524
+ cargo run --example quantized-t5 --release -- \
525
+ --model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \
526
+ --prompt "<2de> How are you, my friend?" \
527
+ --temperature 0
528
+ ...
529
+ Wie geht es dir, mein Freund?
530
+ ```
531
 
532
+ </details>
533
 
 
534
 
535
+ # Uses
536
 
537
+ ## Direct Use and Downstream Use
538
 
539
+ > Primary intended uses: Machine Translation and multilingual NLP tasks on over 400 languages.
540
+ > Primary intended users: Research community.
541
 
542
+ ## Out-of-Scope Use
543
 
544
+ > These models are trained on general domain data and are therefore not meant to
545
+ > work on domain-specific models out-of-the box. Moreover, these research models have not been assessed
546
+ > for production usecases.
547
 
548
+ # Bias, Risks, and Limitations
549
 
550
+ > We note that we evaluate on only 204 of the languages supported by these models and on machine translation
551
+ > and few-shot machine translation tasks. Users must consider use of this model carefully for their own
552
+ > usecase.
553
 
554
+ ## Ethical considerations and risks
555
 
556
+ > We trained these models with MADLAD-400 and publicly available data to create baseline models that
557
+ > support NLP for over 400 languages, with a focus on languages underrepresented in large-scale corpora.
558
+ > Given that these models were trained with web-crawled datasets that may contain sensitive, offensive or
559
+ > otherwise low-quality content despite extensive preprocessing, it is still possible that these issues to the
560
+ > underlying training data may cause differences in model performance and toxic (or otherwise problematic)
561
+ > output for certain domains. Moreover, large models are dual use technologies that have specific risks
562
+ > associated with their use and development. We point the reader to surveys such as those written by
563
+ > Weidinger et al. or Bommasani et al. for a more detailed discussion of these risks, and to Liebling
564
+ > et al. for a thorough discussion of the risks of machine translation systems.
565
 
566
+ ## Known Limitations
567
 
568
+ More information needed
569
 
570
+ ## Sensitive Use:
571
 
572
+ More information needed
573
 
574
+ # Training Details
575
 
576
+ > We train models of various sizes: a 3B, 32-layer parameter model,
577
+ > a 7.2B 48-layer parameter model and a 10.7B 32-layer parameter model.
578
+ > We share all parameters of the model across language pairs,
579
+ > and use a Sentence Piece Model with 256k tokens shared on both the encoder and decoder
580
+ > side. Each input sentence has a <2xx> token prepended to the source sentence to indicate the target
581
+ > language.
582
 
583
+ See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
584
 
585
+ ## Training Data
586
 
587
+ > For both the machine translation and language model, MADLAD-400 is used. For the machine translation
588
+ > model, a combination of parallel datasources covering 157 languages is also used. Further details are
589
+ > described in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
590
 
591
+ ## Training Procedure
592
 
593
+ See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
594
 
595
+ # Evaluation
 
 
 
 
596
 
597
+ ## Testing Data, Factors & Metrics
598
 
599
+ > For evaluation, we used WMT, NTREX, Flores-200 and Gatones datasets as described in Section 4.3 in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
600
 
601
+ > The translation quality of this model varies based on language, as seen in the paper, and likely varies on
602
+ > domain, though we have not assessed this.
603
 
604
+ ## Results
605
 
606
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/EzsMD1AwCuFH0S0DeD-n8.png)
607
 
608
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/CJ5zCUVy7vTU76Lc8NZcK.png)
609
 
610
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/NK0S-yVeWuhKoidpLYh3m.png)
611
 
612
+ See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
613
 
614
+ # Environmental Impact
615
 
616
+ More information needed
617
 
618
+ # Citation
619
 
620
  **BibTeX:**
621
 
622
+ ```bibtex
623
+ @misc{kudugunta2023madlad400,
624
+ title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset},
625
+ author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat},
626
+ year={2023},
627
+ eprint={2309.04662},
628
+ archivePrefix={arXiv},
629
+ primaryClass={cs.CL}
630
+ }
631
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632