File size: 1,502 Bytes
50ed833
 
2d55e78
 
 
50ed833
 
 
 
 
 
 
 
 
 
 
 
2d55e78
50ed833
2d55e78
50ed833
2d55e78
50ed833
 
 
 
 
 
 
 
2d55e78
50ed833
 
 
 
 
 
 
 
 
2d55e78
50ed833
 
2d55e78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
pipeline_tag: sentence-similarity
language:
- fr
- en
license: apache-2.0
tags:
- passage-retrieval
- sentence-similarity
- pruned
library_name: sentence-transformers
base_model: Alibaba-NLP/gte-multilingual-base
base_model_relation: quantized
---
# 🇫🇷 french-gte-multilingual-base

This model is a 51.4% smaller version of [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) 
for the French and English language, created using the [mtem-pruner](https://huggingface.co/spaces/antoinelouis/mtem-pruner) space.

This pruned model should perform similarly to the original model for French and English language tasks with a much smaller 
memory footprint. However, it may not perform well for other languages present in the original multilingual model as tokens not 
commonly used in French and English were removed from the original multilingual model's vocabulary.

## Usage

You can use this model with the Transformers library:

```python
from transformers import AutoModel, AutoTokenizer

model_name = "ijohn07/french-english-gte-base"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
```

Or with the sentence-transformers library:

```python
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("ijohn07/french-english-gte-base")
```

**Credits**: cc [@antoinelouis](https://huggingface.co/antoinelouis)