File size: 2,153 Bytes
d49f1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: ps_af
split: test
args: ps_af
metrics:
- name: Wer
type: wer
value: 55.92064476131432
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-large-v2
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0077
- Wer: 55.9206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 700
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.2281 | 16.59 | 100 | 1.0951 | 69.3118 |
| 0.7529 | 33.3 | 200 | 0.8693 | 57.5635 |
| 0.5372 | 49.89 | 300 | 0.8399 | 54.7350 |
| 0.4398 | 66.59 | 400 | 0.8623 | 54.0685 |
| 0.3244 | 83.3 | 500 | 0.9098 | 54.7505 |
| 0.238 | 99.89 | 600 | 0.9607 | 55.3782 |
| 0.2014 | 116.59 | 700 | 1.0077 | 55.9206 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|