File size: 16,135 Bytes
80de44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "118UKH5bWCGa"
      },
      "source": [
        "# DALL·E mini - Inference pipeline\n",
        "\n",
        "*Generate images from a text prompt*\n",
        "\n",
        "<img src=\"https://github.com/borisdayma/dalle-mini/blob/main/img/logo.png?raw=true\" width=\"200\">\n",
        "\n",
        "This notebook illustrates [DALL·E mini](https://github.com/borisdayma/dalle-mini) inference pipeline.\n",
        "\n",
        "Just want to play? Use directly [the app](https://www.craiyon.com/).\n",
        "\n",
        "For more understanding of the model, refer to [the report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dS8LbaonYm3a"
      },
      "source": [
        "## 🛠️ Installation and set-up"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "uzjAM2GBYpZX"
      },
      "outputs": [],
      "source": [
        "# Required only for colab environments + GPU\n",
        "!pip install jax==0.3.25 jaxlib==0.3.25 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html\n",
        "\n",
        "# Install required libraries\n",
        "!pip install -q dalle-mini\n",
        "!pip install -q git+https://github.com/patil-suraj/vqgan-jax.git"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ozHzTkyv8cqU"
      },
      "source": [
        "We load required models:\n",
        "* DALL·E mini for text to encoded images\n",
        "* VQGAN for decoding images\n",
        "* CLIP for scoring predictions"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "K6CxW2o42f-w"
      },
      "outputs": [],
      "source": [
        "# Model references\n",
        "\n",
        "# dalle-mega\n",
        "DALLE_MODEL = \"dalle-mini/dalle-mini/mega-1-fp16:latest\"  # can be wandb artifact or 🤗 Hub or local folder or google bucket\n",
        "DALLE_COMMIT_ID = None\n",
        "\n",
        "# if the notebook crashes too often you can use dalle-mini instead by uncommenting below line\n",
        "# DALLE_MODEL = \"dalle-mini/dalle-mini/mini-1:v0\"\n",
        "\n",
        "# VQGAN model\n",
        "VQGAN_REPO = \"dalle-mini/vqgan_imagenet_f16_16384\"\n",
        "VQGAN_COMMIT_ID = \"e93a26e7707683d349bf5d5c41c5b0ef69b677a9\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Yv-aR3t4Oe5v"
      },
      "outputs": [],
      "source": [
        "import jax\n",
        "import jax.numpy as jnp\n",
        "\n",
        "# check how many devices are available\n",
        "jax.local_device_count()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "92zYmvsQ38vL"
      },
      "outputs": [],
      "source": [
        "# Load models & tokenizer\n",
        "from dalle_mini import DalleBart, DalleBartProcessor\n",
        "from vqgan_jax.modeling_flax_vqgan import VQModel\n",
        "from transformers import CLIPProcessor, FlaxCLIPModel\n",
        "\n",
        "# Load dalle-mini\n",
        "model, params = DalleBart.from_pretrained(\n",
        "    DALLE_MODEL, revision=DALLE_COMMIT_ID, dtype=jnp.float16, _do_init=False\n",
        ")\n",
        "\n",
        "# Load VQGAN\n",
        "vqgan, vqgan_params = VQModel.from_pretrained(\n",
        "    VQGAN_REPO, revision=VQGAN_COMMIT_ID, _do_init=False\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "o_vH2X1tDtzA"
      },
      "source": [
        "Model parameters are replicated on each device for faster inference."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "wtvLoM48EeVw"
      },
      "outputs": [],
      "source": [
        "from flax.jax_utils import replicate\n",
        "\n",
        "params = replicate(params)\n",
        "vqgan_params = replicate(vqgan_params)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0A9AHQIgZ_qw"
      },
      "source": [
        "Model functions are compiled and parallelized to take advantage of multiple devices."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "sOtoOmYsSYPz"
      },
      "outputs": [],
      "source": [
        "from functools import partial\n",
        "\n",
        "\n",
        "# model inference\n",
        "@partial(jax.pmap, axis_name=\"batch\", static_broadcasted_argnums=(3, 4, 5, 6))\n",
        "def p_generate(\n",
        "    tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale\n",
        "):\n",
        "    return model.generate(\n",
        "        **tokenized_prompt,\n",
        "        prng_key=key,\n",
        "        params=params,\n",
        "        top_k=top_k,\n",
        "        top_p=top_p,\n",
        "        temperature=temperature,\n",
        "        condition_scale=condition_scale,\n",
        "    )\n",
        "\n",
        "\n",
        "# decode image\n",
        "@partial(jax.pmap, axis_name=\"batch\")\n",
        "def p_decode(indices, params):\n",
        "    return vqgan.decode_code(indices, params=params)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HmVN6IBwapBA"
      },
      "source": [
        "Keys are passed to the model on each device to generate unique inference per device."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4CTXmlUkThhX"
      },
      "outputs": [],
      "source": [
        "import random\n",
        "\n",
        "# create a random key\n",
        "seed = random.randint(0, 2**32 - 1)\n",
        "key = jax.random.PRNGKey(seed)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BrnVyCo81pij"
      },
      "source": [
        "## 🖍 Text Prompt"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rsmj0Aj5OQox"
      },
      "source": [
        "Our model requires processing prompts."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "YjjhUychOVxm"
      },
      "outputs": [],
      "source": [
        "from dalle_mini import DalleBartProcessor\n",
        "\n",
        "processor = DalleBartProcessor.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BQ7fymSPyvF_"
      },
      "source": [
        "Let's define some text prompts."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "x_0vI9ge1oKr"
      },
      "outputs": [],
      "source": [
        "prompts = [\n",
        "    \"sunset over a lake in the mountains\",\n",
        "    \"the Eiffel tower landing on the moon\",\n",
        "]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XlZUG3SCLnGE"
      },
      "source": [
        "Note: we could use the same prompt multiple times for faster inference."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "VKjEZGjtO49k"
      },
      "outputs": [],
      "source": [
        "tokenized_prompts = processor(prompts)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-CEJBnuJOe5z"
      },
      "source": [
        "Finally we replicate the prompts onto each device."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "lQePgju5Oe5z"
      },
      "outputs": [],
      "source": [
        "tokenized_prompt = replicate(tokenized_prompts)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "phQ9bhjRkgAZ"
      },
      "source": [
        "## 🎨 Generate images\n",
        "\n",
        "We generate images using dalle-mini model and decode them with the VQGAN."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "d0wVkXpKqnHA"
      },
      "outputs": [],
      "source": [
        "# number of predictions per prompt\n",
        "n_predictions = 8\n",
        "\n",
        "# We can customize generation parameters (see https://huggingface.co/blog/how-to-generate)\n",
        "gen_top_k = None\n",
        "gen_top_p = None\n",
        "temperature = None\n",
        "cond_scale = 10.0"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SDjEx9JxR3v8"
      },
      "outputs": [],
      "source": [
        "from flax.training.common_utils import shard_prng_key\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "from tqdm.notebook import trange\n",
        "\n",
        "print(f\"Prompts: {prompts}\\n\")\n",
        "# generate images\n",
        "images = []\n",
        "for i in trange(max(n_predictions // jax.device_count(), 1)):\n",
        "    # get a new key\n",
        "    key, subkey = jax.random.split(key)\n",
        "    # generate images\n",
        "    encoded_images = p_generate(\n",
        "        tokenized_prompt,\n",
        "        shard_prng_key(subkey),\n",
        "        params,\n",
        "        gen_top_k,\n",
        "        gen_top_p,\n",
        "        temperature,\n",
        "        cond_scale,\n",
        "    )\n",
        "    # remove BOS\n",
        "    encoded_images = encoded_images.sequences[..., 1:]\n",
        "    # decode images\n",
        "    decoded_images = p_decode(encoded_images, vqgan_params)\n",
        "    decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))\n",
        "    for decoded_img in decoded_images:\n",
        "        img = Image.fromarray(np.asarray(decoded_img * 255, dtype=np.uint8))\n",
        "        images.append(img)\n",
        "        display(img)\n",
        "        print()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tw02wG9zGmyB"
      },
      "source": [
        "## 🏅 Optional: Rank images by CLIP score\n",
        "\n",
        "We can rank images according to CLIP.\n",
        "\n",
        "**Note: your session may crash if you don't have a subscription to Colab Pro.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RGjlIW_f6GA0"
      },
      "outputs": [],
      "source": [
        "# CLIP model\n",
        "CLIP_REPO = \"openai/clip-vit-base-patch32\"\n",
        "CLIP_COMMIT_ID = None\n",
        "\n",
        "# Load CLIP\n",
        "clip, clip_params = FlaxCLIPModel.from_pretrained(\n",
        "    CLIP_REPO, revision=CLIP_COMMIT_ID, dtype=jnp.float16, _do_init=False\n",
        ")\n",
        "clip_processor = CLIPProcessor.from_pretrained(CLIP_REPO, revision=CLIP_COMMIT_ID)\n",
        "clip_params = replicate(clip_params)\n",
        "\n",
        "\n",
        "# score images\n",
        "@partial(jax.pmap, axis_name=\"batch\")\n",
        "def p_clip(inputs, params):\n",
        "    logits = clip(params=params, **inputs).logits_per_image\n",
        "    return logits"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "FoLXpjCmGpju"
      },
      "outputs": [],
      "source": [
        "from flax.training.common_utils import shard\n",
        "\n",
        "# get clip scores\n",
        "clip_inputs = clip_processor(\n",
        "    text=prompts * jax.device_count(),\n",
        "    images=images,\n",
        "    return_tensors=\"np\",\n",
        "    padding=\"max_length\",\n",
        "    max_length=77,\n",
        "    truncation=True,\n",
        ").data\n",
        "logits = p_clip(shard(clip_inputs), clip_params)\n",
        "\n",
        "# organize scores per prompt\n",
        "p = len(prompts)\n",
        "logits = np.asarray([logits[:, i::p, i] for i in range(p)]).squeeze()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4AAWRm70LgED"
      },
      "source": [
        "Let's now display images ranked by CLIP score."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "zsgxxubLLkIu"
      },
      "outputs": [],
      "source": [
        "for i, prompt in enumerate(prompts):\n",
        "    print(f\"Prompt: {prompt}\\n\")\n",
        "    for idx in logits[i].argsort()[::-1]:\n",
        "        display(images[idx * p + i])\n",
        "        print(f\"Score: {jnp.asarray(logits[i][idx], dtype=jnp.float32):.2f}\\n\")\n",
        "    print()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "oZT9i3jCjir0"
      },
      "source": [
        "## 🪄 Optional: Save your Generated Images as W&B Tables\n",
        "\n",
        "W&B Tables is an interactive 2D grid with support to rich media logging. Use this to save the generated images on W&B dashboard and share with the world."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "-pSiv6Vwjkn0"
      },
      "outputs": [],
      "source": [
        "import wandb\n",
        "\n",
        "# Initialize a W&B run.\n",
        "project = \"dalle-mini-tables-colab\"\n",
        "run = wandb.init(project=project)\n",
        "\n",
        "# Initialize an empty W&B Tables.\n",
        "columns = [\"captions\"] + [f\"image_{i+1}\" for i in range(n_predictions)]\n",
        "gen_table = wandb.Table(columns=columns)\n",
        "\n",
        "# Add data to the table.\n",
        "for i, prompt in enumerate(prompts):\n",
        "    # If CLIP scores exist, sort the Images\n",
        "    if logits is not None:\n",
        "        idxs = logits[i].argsort()[::-1]\n",
        "        tmp_imgs = images[i :: len(prompts)]\n",
        "        tmp_imgs = [tmp_imgs[idx] for idx in idxs]\n",
        "    else:\n",
        "        tmp_imgs = images[i :: len(prompts)]\n",
        "\n",
        "    # Add the data to the table.\n",
        "    gen_table.add_data(prompt, *[wandb.Image(img) for img in tmp_imgs])\n",
        "\n",
        "# Log the Table to W&B dashboard.\n",
        "wandb.log({\"Generated Images\": gen_table})\n",
        "\n",
        "# Close the W&B run.\n",
        "run.finish()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ck2ZnHwVjnRd"
      },
      "source": [
        "Click on the link above to check out your generated images."
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "machine_shape": "hm",
      "name": "DALL·E mini - Inference pipeline.ipynb",
      "provenance": [],
      "gpuType": "A100",
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.7"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}