license: apache-2.0
library_name: sklearn
tags:
- tabular-classification
- baseline-trainer
Baseline Model trained on irisg444_4c0 to apply classification on Species
Metrics of the best model:
accuracy 0.953333
recall_macro 0.953333
precision_macro 0.956229
f1_macro 0.953216
Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64
See model plot below:
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string uselessIn a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string useless SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])
EasyPreprocessor(types= continuous dirty_float ... free_string useless SepalLengthCm True False ... False False SepalWidthCm True False ... False False PetalLengthCm True False ... False False PetalWidthCm True False ... False False[4 rows x 7 columns])
LogisticRegression(C=1, class_weight='balanced', max_iter=1000)
Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.
Logs of training including the models tried in the process can be found in logs.txt