metadata
language:
- en
license: apache-2.0
tags:
- merge
model-index:
- name: NeuralHermes-MoE-2x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.12
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.21
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.56
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.61
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.86
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
name: Open LLM Leaderboard
NeuralHermes-MoE-2x7B
This is a mix between teknium/OpenHermes-2.5-Mistral-7B and Intel/neural-chat-7b-v3-3. Using mistralai/Mistral-7B-v0.1 as the base model.
This Mixture of Expert was done using mergekit
method.
Getting Started
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="ibndias/NeuralHermes-MoE-2x7B",torch_dtype=torch.bfloat16, device_map="auto")
prompt = """<|system|> You are a helpful assistant.
<|user|>
Write me bash script to scan ip 192.3.1.4 with nmap only port that ends with 9 from 1-100.
<|assistant|>
"""
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.2, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Output:
<|system|> You are a helpful assistant. <|user|> Write me bash script to scan ip 192.3.1.4 with nmap only port that ends with 9 from 1-100. <|assistant|> Sure, here's a bash script that scans the specified IP address with nmap for open ports that end with 9 from 1 to 100:
#!/bin/bash IP_ADDRESS="192.3.1.4" START_PORT=1 END_PORT=100 for ((i=$START_PORT; i<=$END_PORT; i++)); do PORT=$i if [[ $PORT % 10 == 9 ]]; then nmap -p $PORT $IP_ADDRESS fi done
Save the script with a.sh extension (e.g., scan_ports.sh) and make it executable by running
chmod +x scan_ports.sh
. Then, run the script by executing./scan_ports.sh
. ...
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 64.08 |
AI2 Reasoning Challenge (25-Shot) | 62.12 |
HellaSwag (10-Shot) | 84.21 |
MMLU (5-Shot) | 64.56 |
TruthfulQA (0-shot) | 43.61 |
Winogrande (5-shot) | 78.14 |
GSM8k (5-shot) | 51.86 |