bkmekonne's picture
We find your model to be a great base-model (#1)
808c1e3
|
raw
history blame
4.77 kB
metadata
language: en
tags:
  - exbert
license: mit

ColD Fusion model

Finetuned model that aims to be a great base model. It improves over RoBERTa base, trained on 35 datasets. Full details at this paper.

Paper Abstract:

Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now, massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources that are only available to well-resourced teams.

In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets, ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.

How to use

Best way to use is to finetune on your own task, but you can also extract features directly. To get the features of a given text in PyTorch:

from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
model = RobertaModel.from_pretrained('ibm/ColD-Fusion')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
model = TFRobertaModel.from_pretrained('ibm/ColD-Fusion')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Evaluation results

Evaluation on 36 dataset using ibm/ColD-Fusion-itr14-seed0 as a base model, yield average score of 78.64. According to website, this is the 2th best model for roberta-base models (updated to 11/12/2022)

Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
85.7807 89.7 66.3 51.9688 81.4373 83.9286 83.2215 70 77.6333 90.7166 85.2 93.62 72.6858 86.8999 88.7255 63.8408 90.3846 92.3668 91.3579 91.0882 84.8375 95.8716 57.5113 91.4939 97.8 91 46.896 82.7586 54.8485 77.8061 85.4651 69.9935 69.7492 52.1127 63.4615 72.7

BibTeX entry and citation info

@article{ColDFusion,
  author    = {Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, Leshem ChoshenYinhan Liu and},
  title     = {ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning},
  journal   = {CoRR},
  volume    = {abs/2212.01378},
  year      = {2022},
  url       = {https://arxiv.org/abs/2212.01378},
  archivePrefix = {arXiv},
  eprint    = {2212.01378},
}