File size: 14,186 Bytes
13d7913
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
13d7913
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
13d7913
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
 
 
 
 
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
 
 
13d7913
9bb6f80
 
 
 
13d7913
9bb6f80
 
 
 
 
13d7913
9bb6f80
13d7913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb6f80
 
 
13d7913
 
9bb6f80
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import argparse
import functools
import os
from typing import List

import numpy as np
import rasterio
import torch
import yaml
from einops import rearrange

from mae.models_mae import MaskedAutoencoderViT


NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
PERCENTILES = (0.1, 99.9)


def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
    """ Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
        original range using *data_mean* and *data_std* and then lowest and highest percentiles are
        removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.

    Args:
        orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
        new_img: torch.Tensor representing image with shape = (bands, H, W).
        channels: list of indices representing RGB channels.
        data_mean: list of mean values for each band.
        data_std: list of std values for each band.

    Returns:
        torch.Tensor with shape (num_channels, height, width) for original image
        torch.Tensor with shape (num_channels, height, width) for the other image
    """

    stack_c = [], []

    for c in channels:
        orig_ch = orig_img[c, ...]
        valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
        valid_mask[orig_ch == NO_DATA_FLOAT] = False

        # Back to original data range
        orig_ch = (orig_ch * data_std[c]) + data_mean[c]
        new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]

        # Rescale (enhancing contrast)
        min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)

        orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
        new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)

        # No data as zeros
        orig_ch[~valid_mask] = 0
        new_ch[~valid_mask] = 0

        stack_c[0].append(orig_ch)
        stack_c[1].append(new_ch)

    # Channels first
    stack_orig = torch.stack(stack_c[0], dim=0)
    stack_rec = torch.stack(stack_c[1], dim=0)

    return stack_orig, stack_rec


def read_geotiff(file_path: str):
    """ Read all bands from *file_path* and return image + meta info.

    Args:
        file_path: path to image file.

    Returns:
        np.ndarray with shape (bands, height, width)
        meta info dict
    """

    with rasterio.open(file_path) as src:
        img = src.read()
        meta = src.meta

    return img, meta


def save_geotiff(image, output_path: str, meta: dict):
    """ Save multi-band image in Geotiff file.

    Args:
        image: np.ndarray with shape (bands, height, width)
        output_path: path where to save the image
        meta: dict with meta info.
    """

    with rasterio.open(output_path, "w", **meta) as dest:
        for i in range(image.shape[0]):
            dest.write(image[i, :, :], i + 1)

    return


def _convert_np_uint8(float_image: torch.Tensor):

    image = float_image.numpy() * 255.0
    image = image.astype(dtype=np.uint8)

    return image


def load_example(file_paths: List[str], mean: List[float], std: List[float]):
    """ Build an input example by loading images in *file_paths*.

    Args:
        file_paths: list of file paths .
        mean: list containing mean values for each band in the images in *file_paths*.
        std: list containing std values for each band in the images in *file_paths*.

    Returns:
        np.array containing created example
        list of meta info for each image in *file_paths*
    """

    imgs = []
    metas = []

    for file in file_paths:
        img, meta = read_geotiff(file)

        # Rescaling (don't normalize on nodata)
        img = np.moveaxis(img, 0, -1)   # channels last for rescaling
        img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)

        imgs.append(img)
        metas.append(meta)

    imgs = np.stack(imgs, axis=0)    # num_frames, H, W, C
    imgs = np.moveaxis(imgs, -1, 0).astype('float32')  # C, num_frames, H, W
    imgs = np.expand_dims(imgs, axis=0)  # add batch dim

    return imgs, metas


def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
    """ Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).

    Args:
        model: MAE model to run.
        input_data: torch.Tensor with shape (B, C, T, H, W).
        mask_ratio: mask ratio to use.
        device: device where model should run.

    Returns:
        3 torch.Tensor with shape (B, C, T, H, W).
    """

    with torch.no_grad():
        x = input_data.to(device)

        _, pred, mask = model(x, mask_ratio)

    # Create mask and prediction images (un-patchify)
    mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
    pred_img = model.unpatchify(pred).detach().cpu()

    # Mix visible and predicted patches
    rec_img = input_data.clone()
    rec_img[mask_img == 1] = pred_img[mask_img == 1]  # binary mask: 0 is keep, 1 is remove

    # Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
    mask_img = (~(mask_img.to(torch.bool))).to(torch.float)

    return rec_img, mask_img


def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
    """ Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.

    Args:
        input_img: input torch.Tensor with shape (C, T, H, W).
        rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
        mask_img: mask torch.Tensor with shape (C, T, H, W).
        channels: list of indices representing RGB channels.
        mean: list of mean values for each band.
        std: list of std values for each band.
        output_dir: directory where to save outputs.
        meta_data: list of dicts with geotiff meta info.
    """

    for t in range(input_img.shape[1]):
        rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
                                                   new_img=rec_img[:, t, :, :],
                                                   channels=channels, data_mean=mean,
                                                   data_std=std)

        rgb_mask = mask_img[channels, t, :, :] * rgb_orig

        # Saving images

        save_geotiff(image=_convert_np_uint8(rgb_orig),
                     output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
                     meta=meta_data[t])

        save_geotiff(image=_convert_np_uint8(rgb_pred),
                     output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
                     meta=meta_data[t])

        save_geotiff(image=_convert_np_uint8(rgb_mask),
                     output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
                     meta=meta_data[t])


def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
    """ Wrapper function to save Geotiff images (reconstructed, mask) per timestamp.

    Args:
        rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
        mask_img: mask torch.Tensor with shape (C, T, H, W).
        mean: list of mean values for each band.
        std: list of std values for each band.
        output_dir: directory where to save outputs.
        meta_data: list of dicts with geotiff meta info.
    """

    mean = torch.tensor(np.asarray(mean)[:, None, None])  # C H W
    std = torch.tensor(np.asarray(std)[:, None, None])

    for t in range(rec_img.shape[1]):

        # Back to original data range
        rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)

        mask_img_t = mask_img[:, t, :, :].to(torch.int16)

        # Saving images

        save_geotiff(image=rec_img_t,
                     output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"),
                     meta=meta_data[t])

        save_geotiff(image=mask_img_t,
                     output_path=os.path.join(output_dir, f"mask_t{t}.tiff"),
                     meta=meta_data[t])


def main(data_files: List[str], yaml_file_path: str, checkpoint: str, output_dir: str,
         mask_ratio: float, rgb_outputs: bool):

    os.makedirs(output_dir, exist_ok=True)

    # Get parameters --------

    with open(yaml_file_path, 'r') as f:
        params = yaml.safe_load(f)

    # data related
    num_frames = params['num_frames']
    img_size = params['img_size']
    bands = params['bands']
    mean = params['data_mean']
    std = params['data_std']

    # model related
    depth = params['depth']
    patch_size = params['patch_size']
    embed_dim = params['embed_dim']
    num_heads = params['num_heads']
    tubelet_size = params['tubelet_size']
    decoder_embed_dim = params['decoder_embed_dim']
    decoder_num_heads = params['decoder_num_heads']
    decoder_depth = params['decoder_depth']

    batch_size = params['batch_size']

    mask_ratio = params['mask_ratio'] if mask_ratio is None else mask_ratio

    # We must have *num_frames* files to build one example!
    assert len(data_files) == num_frames, "File list must be equal to expected number of frames."

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    print(f"Using {device} device.\n")

    # Loading data ---------------------------------------------------------------------------------

    input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std)

    # Create model and load checkpoint -------------------------------------------------------------

    model = MaskedAutoencoderViT(
            img_size=img_size,
            patch_size=patch_size,
            num_frames=num_frames,
            tubelet_size=tubelet_size,
            in_chans=len(bands),
            embed_dim=embed_dim,
            depth=depth,
            num_heads=num_heads,
            decoder_embed_dim=decoder_embed_dim,
            decoder_depth=decoder_depth,
            decoder_num_heads=decoder_num_heads,
            mlp_ratio=4.,
            norm_layer=functools.partial(torch.nn.LayerNorm, eps=1e-6),
            norm_pix_loss=False)

    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\n--> Model has {total_params:,} parameters.\n")

    model.to(device)

    state_dict = torch.load(checkpoint, map_location=device)
    model.load_state_dict(state_dict)
    print(f"Loaded checkpoint from {checkpoint}")

    # Running model --------------------------------------------------------------------------------

    model.eval()
    channels = [bands.index(b) for b in ['B04', 'B03', 'B02']]  # BGR -> RGB

    # Reflect pad if not divisible by img_size
    original_h, original_w = input_data.shape[-2:]
    pad_h = img_size - (original_h % img_size)
    pad_w = img_size - (original_w % img_size)
    input_data = np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode='reflect')

    # Build sliding window
    batch = torch.tensor(input_data, device='cpu')
    windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
    h1, w1 = windows.shape[3:5]
    windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size)

    # Split into batches if number of windows > batch_size
    num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
    windows = torch.tensor_split(windows, num_batches, dim=0)

    # Run model
    rec_imgs = []
    mask_imgs = []
    for x in windows:
        rec_img, mask_img = run_model(model, x, mask_ratio, device)
        rec_imgs.append(rec_img)
        mask_imgs.append(mask_img)

    rec_imgs = torch.concat(rec_imgs, dim=0)
    mask_imgs = torch.concat(mask_imgs, dim=0)

    # Build images from patches
    rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
                         h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
    mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
                          h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)

    # Cut padded images back to original size
    rec_imgs_full = rec_imgs[..., :original_h, :original_w]
    mask_imgs_full = mask_imgs[..., :original_h, :original_w]
    batch_full = batch[..., :original_h, :original_w]

    # Build output images
    if rgb_outputs:
        for d in meta_data:
            d.update(count=3, dtype='uint8', compress='lzw', nodata=0)

        save_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
                      channels, mean, std, output_dir, meta_data)
    else:
        for d in meta_data:
            d.update(compress='lzw', nodata=0)

        save_imgs(rec_imgs_full[0, ...], mask_imgs_full[0, ...], mean, std, output_dir, meta_data)

    print("Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser('MAE run inference', add_help=False)

    parser.add_argument('--data_files', required=True, type=str, nargs='+',
                        help='Path to the data files. Assumes multi-band files.')
    parser.add_argument('--yaml_file_path', type=str, required=True,
                        help='Path to yaml file containing model training parameters.')
    parser.add_argument('--checkpoint', required=True, type=str,
                        help='Path to a checkpoint file to load from.')
    parser.add_argument('--output_dir', required=True, type=str,
                        help='Path to the directory where to save outputs.')
    parser.add_argument('--mask_ratio', default=None, type=float,
                        help='Masking ratio (percentage of removed patches). '
                             'If None (default) use same value used for pretraining.')
    parser.add_argument('--rgb_outputs', action='store_true',
                        help='If present, output files will only contain RGB channels. '
                             'Otherwise, all bands will be saved.')
    args = parser.parse_args()

    main(**vars(args))